中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

“大數(shù)據(jù)”已經(jīng)過時了嗎

2021-02-12    分類: 網(wǎng)站建設

5271724-a9e1197b45a47a75.webp

“大數(shù)據(jù)”與其說是過時了,倒不如說還沒有真正開始。只要摩爾定律還在生效,每過18個月電子技術就要翻一番的話,那么大數(shù)據(jù)時代就只能在路上。這是因為,隨著計算技術的不斷進步,存儲成本的不斷降低,人們有越來越多的資本去收集更多的數(shù)據(jù),進行更顆?;姆治觥H欢?,在傳統(tǒng)的數(shù)據(jù)分析中,當數(shù)據(jù)量大到一定的程度時,分析結果就不會進一步優(yōu)化了。

舉一個最簡單的線形分類的例子,對于平面上一堆被零散放置的兩種球(紅球和藍球),通過畫一條直線盡可能好的將兩類球分開,然后對于新的放進來的球(可能被包起來),單憑直線的劃分去判斷新球的顏色。很容易就可以看出,由于我們分類的模型相當簡單(只有一條直線),那么海量的數(shù)據(jù)可能對于提升模型精度的意義不是太大,這也是傳統(tǒng)數(shù)據(jù)科學遇到的問題。機器學習(數(shù)據(jù)科學主要的分析手段)方法遇到的主要瓶頸也在這里,在這種情況下,更多的數(shù)據(jù)是沒有更大意義的。

深度學習使得這一瓶頸得到突破,這一學習方法簡單來說就是通過多層、多個計算算子進行分析,從而可以建立足夠復雜的模型,以提高數(shù)據(jù)分析能力。這種方法也被稱為神經(jīng)網(wǎng)絡,因為每個算子就像神經(jīng)一樣微小而彼此相連,當然這一科學本身并沒有仿生學的意義,只是僅僅看上去與神經(jīng)相類似而已。在這種學習方法下,更大的數(shù)據(jù)量通??梢詭砀叩木?,而且還存在精度從量變到質(zhì)變提升的可能,因此數(shù)據(jù)科學家們對數(shù)據(jù)的需求也突然增大,大數(shù)據(jù)科學也因此應運而生。

對深度學習的詬病之一,是由于模型開始復雜起來,人們沒有辦法再像一條直線那樣容易理解機器分類的標準規(guī)范。當存在理解的黑洞時,機器學習在一部分人眼中也就成了巫術。比如,給模型提供一批好的作文和不那么好的作文,經(jīng)過學習,機器可以對新的作文進行評分,這些評分僅僅是根據(jù)前面提供的素材學習而來的,但是機器無法給出詳細的評分理由,這就讓結果的信任度大打折扣。不過,近來有關于深度學習算法原理的解釋,這可能是把深度學習從“巫術”變成有理論支撐的科學的第一步。

無論怎么說,隨著深度學習的快速發(fā)展,大數(shù)據(jù)應該只是僅僅拉開了幕布一角,遠沒有到全面降臨的時刻。而隨著深度學習、人工智能(后者往往是以前者為基礎的)的快速發(fā)展,對數(shù)據(jù)需求的量級也會越來越多,到那時,可能才是真正的“大數(shù)據(jù)時代”

新聞名稱:“大數(shù)據(jù)”已經(jīng)過時了嗎
當前URL:http://www.rwnh.cn/news6/100556.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站制作服務器托管、電子商務、建站公司網(wǎng)站策劃、網(wǎng)站收錄

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都網(wǎng)站建設
当涂县| 武强县| 鸡东县| 抚松县| 永清县| 嘉祥县| 万年县| 通化县| 汉川市| 富平县| 如皋市| 和林格尔县| 凤台县| 滕州市| 潜江市| 柞水县| 襄樊市| 南岸区| 墨竹工卡县| 巫山县| 广灵县| 榆林市| 项城市| 繁昌县| 张掖市| 华容县| 伊春市| 彰化县| 浑源县| 论坛| 科技| 大同县| 双江| 中西区| 漾濞| 定州市| 日土县| 河池市| 呼和浩特市| 梁山县| 亚东县|