中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

nosql數(shù)據(jù)庫計算,nosql數(shù)據(jù)庫技術(shù)

nosql數(shù)據(jù)庫庫和sql數(shù)據(jù)庫的區(qū)別

一、概念

網(wǎng)站建設(shè)哪家好,找成都創(chuàng)新互聯(lián)公司!專注于網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、成都小程序開發(fā)、集團企業(yè)網(wǎng)站建設(shè)等服務(wù)項目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了武勝免費建站歡迎大家使用!

SQL?(Structured?Query?Language)?數(shù)據(jù)庫,指關(guān)系型數(shù)據(jù)庫。主要代表:SQL?Server,Oracle,MySQL(開源),PostgreSQL(開源)。

NoSQL(Not?Only?SQL)泛指非關(guān)系型數(shù)據(jù)庫。主要代表:MongoDB,Redis,CouchDB。

二、區(qū)別

1、存儲方式

SQL數(shù)據(jù)存在特定結(jié)構(gòu)的表中;而NoSQL則更加靈活和可擴展,存儲方式可以省是JSON文檔、哈希表或者其他方式。SQL通常以數(shù)據(jù)庫表形式存儲數(shù)據(jù)。舉個栗子,存?zhèn)€學(xué)生借書數(shù)據(jù):

而NoSQL存儲方式比較靈活,比如使用類JSON文件存儲上表中熊大的借閱數(shù)據(jù):

2、表/數(shù)據(jù)集合的數(shù)據(jù)的關(guān)系

在SQL中,必須定義好表和字段結(jié)構(gòu)后才能添加數(shù)據(jù),例如定義表的主鍵(primary?key),索引(index),觸發(fā)器(trigger),存儲過程(stored?procedure)等。表結(jié)構(gòu)可以在被定義之后更新,但是如果有比較大的結(jié)構(gòu)變更的話就會變得比較復(fù)雜。在NoSQL中,數(shù)據(jù)可以在任何時候任何地方添加,不需要先定義表。例如下面這段代碼會自動創(chuàng)建一個新的"借閱表"數(shù)據(jù)集合:

NoSQL也可以在數(shù)據(jù)集中建立索引。以MongoDB為例,會自動在數(shù)據(jù)集合創(chuàng)建后創(chuàng)建唯一值_id字段,這樣的話就可以在數(shù)據(jù)集創(chuàng)建后增加索引。

從這點來看,NoSQL可能更加適合初始化數(shù)據(jù)還不明確或者未定的項目中。

3、外部數(shù)據(jù)存儲

SQL中如何需要增加外部關(guān)聯(lián)數(shù)據(jù)的話,規(guī)范化做法是在原表中增加一個外鍵,關(guān)聯(lián)外部數(shù)據(jù)表。例如需要在借閱表中增加審核人信息,先建立一個審核人表:

再在原來的借閱人表中增加審核人外鍵:

這樣如果我們需要更新審核人個人信息的時候只需要更新審核人表而不需要對借閱人表做更新。而在NoSQL中除了這種規(guī)范化的外部數(shù)據(jù)表做法以外,我們還能用如下的非規(guī)范化方式把外部數(shù)據(jù)直接放到原數(shù)據(jù)集中,以提高查詢效率。缺點也比較明顯,更新審核人數(shù)據(jù)的時候?qū)容^麻煩。

4、SQL中的JOIN查詢

SQL中可以使用JOIN表鏈接方式將多個關(guān)系數(shù)據(jù)表中的數(shù)據(jù)用一條簡單的查詢語句查詢出來。NoSQL暫未提供類似JOIN的查詢方式對多個數(shù)據(jù)集中的數(shù)據(jù)做查詢。所以大部分NoSQL使用非規(guī)范化的數(shù)據(jù)存儲方式存儲數(shù)據(jù)。

5、數(shù)據(jù)耦合性

SQL中不允許刪除已經(jīng)被使用的外部數(shù)據(jù),例如審核人表中的"熊三"已經(jīng)被分配給了借閱人熊大,那么在審核人表中將不允許刪除熊三這條數(shù)據(jù),以保證數(shù)據(jù)完整性。而NoSQL中則沒有這種強耦合的概念,可以隨時刪除任何數(shù)據(jù)。

6、事務(wù)

SQL中如果多張表數(shù)據(jù)需要同批次被更新,即如果其中一張表更新失敗的話其他表也不能更新成功。這種場景可以通過事務(wù)來控制,可以在所有命令完成后再統(tǒng)一提交事務(wù)。而NoSQL中沒有事務(wù)這個概念,每一個數(shù)據(jù)集的操作都是原子級的。

7、增刪改查語法

8、查詢性能

在相同水平的系統(tǒng)設(shè)計的前提下,因為NoSQL中省略了JOIN查詢的消耗,故理論上性能上是優(yōu)于SQL的。

數(shù)據(jù)庫都有哪些?

數(shù)據(jù)庫是一組信息的集合,以便可以方便地訪問、管理和更新,常用數(shù)據(jù)庫有:1、關(guān)系型數(shù)據(jù)庫;2、分布式數(shù)據(jù)庫;3、云數(shù)據(jù)庫;4、NoSQL數(shù)據(jù)庫;5、面向?qū)ο蟮臄?shù)據(jù)庫;6、圖形數(shù)據(jù)庫。

計算機數(shù)據(jù)庫通常包含數(shù)據(jù)記錄或文件的聚合,例如銷售事務(wù)、產(chǎn)品目錄和庫存以及客戶配置文件。

通常,數(shù)據(jù)庫管理器為用戶提供了控制讀寫訪問、指定報表生成和分析使用情況的能力。有些數(shù)據(jù)庫提供ACID(原子性、一致性、隔離性和持久性)遵從性,以確保數(shù)據(jù)的一致性和事務(wù)的完整性。

數(shù)據(jù)庫普遍存在于大型主機系統(tǒng)中,但也存在于較小的分布式工作站和中端系統(tǒng)中,如IBM的as /400和個人計算機。

數(shù)據(jù)庫的演變

數(shù)據(jù)庫從1960年代開始發(fā)展,從層次數(shù)據(jù)庫和網(wǎng)絡(luò)數(shù)據(jù)庫開始,到1980年代的面向?qū)ο髷?shù)據(jù)庫,再到今天的SQL和NoSQL數(shù)據(jù)庫和云數(shù)據(jù)庫。

一種觀點認為,數(shù)據(jù)庫可以按照內(nèi)容類型分類:書目、全文、數(shù)字和圖像。在計算中,數(shù)據(jù)庫有時根據(jù)其組織方法進行分類。有許多不同類型的數(shù)據(jù)庫,從最流行的方法關(guān)系數(shù)據(jù)庫到分布式數(shù)據(jù)庫、云數(shù)據(jù)庫或NoSQL數(shù)據(jù)庫。

常用數(shù)據(jù)庫:

1、關(guān)系型數(shù)據(jù)庫

關(guān)系型數(shù)據(jù)庫是由IBM的E.F. Codd于1970年發(fā)明的,它是一個表格數(shù)據(jù)庫,其中定義了數(shù)據(jù),因此可以以多種不同的方式對其進行重組和訪問。

關(guān)系數(shù)據(jù)庫由一組表組成,其中的數(shù)據(jù)屬于預(yù)定義的類別。每個表在一個列中至少有一個數(shù)據(jù)類別,并且每一行對于列中定義的類別都有一個特定的數(shù)據(jù)實例。

結(jié)構(gòu)化查詢語言(SQL)是關(guān)系數(shù)據(jù)庫的標(biāo)準(zhǔn)用戶和應(yīng)用程序接口。關(guān)系數(shù)據(jù)庫易于擴展,并且可以在原始數(shù)據(jù)庫創(chuàng)建之后添加新的數(shù)據(jù)類別,而不需要修改所有現(xiàn)有應(yīng)用程序。

2、分布式數(shù)據(jù)庫

分布式數(shù)據(jù)庫是一種數(shù)據(jù)庫,其中部分數(shù)據(jù)庫存儲在多個物理位置,處理在網(wǎng)絡(luò)中的不同點之間分散或復(fù)制。

分布式數(shù)據(jù)庫可以是同構(gòu)的,也可以是異構(gòu)的。同構(gòu)分布式數(shù)據(jù)庫系統(tǒng)中的所有物理位置都具有相同的底層硬件,并運行相同的操作系統(tǒng)和數(shù)據(jù)庫應(yīng)用程序。異構(gòu)分布式數(shù)據(jù)庫中的硬件、操作系統(tǒng)或數(shù)據(jù)庫應(yīng)用程序在每個位置上可能是不同的。

3、云數(shù)據(jù)庫

云數(shù)據(jù)庫是針對虛擬化環(huán)境(混合云、公共云或私有云)優(yōu)化或構(gòu)建的數(shù)據(jù)庫。云數(shù)據(jù)庫提供了一些好處,比如可以按每次使用支付存儲容量和帶寬的費用,還可以根據(jù)需要提供可伸縮性和高可用性。

云數(shù)據(jù)庫還為企業(yè)提供了在軟件即服務(wù)部署中支持業(yè)務(wù)應(yīng)用程序的機會。

4、NoSQL數(shù)據(jù)庫

NoSQL數(shù)據(jù)庫對于大型分布式數(shù)據(jù)集非常有用。

NoSQL數(shù)據(jù)庫對于關(guān)系數(shù)據(jù)庫無法解決的大數(shù)據(jù)性能問題非常有效。當(dāng)組織必須分析大量非結(jié)構(gòu)化數(shù)據(jù)或存儲在云中多個虛擬服務(wù)器上的數(shù)據(jù)時,它們是最有效的。

5、面向?qū)ο蟮臄?shù)據(jù)庫

使用面向?qū)ο缶幊陶Z言創(chuàng)建的項通常存儲在關(guān)系數(shù)據(jù)庫中,但是面向?qū)ο髷?shù)據(jù)庫非常適合于這些項。

面向?qū)ο蟮臄?shù)據(jù)庫是圍繞對象(而不是操作)和數(shù)據(jù)(而不是邏輯)組織的。例如,關(guān)系數(shù)據(jù)庫中的多媒體記錄可以是可定義的數(shù)據(jù)對象,而不是字母數(shù)字值。

6、圖形數(shù)據(jù)庫

面向圖形的數(shù)據(jù)庫是一種NoSQL數(shù)據(jù)庫,它使用圖形理論存儲、映射和查詢關(guān)系。圖數(shù)據(jù)庫基本上是節(jié)點和邊的集合,其中每個節(jié)點表示一個實體,每個邊表示節(jié)點之間的連接。

圖形數(shù)據(jù)庫在分析互連方面越來越受歡迎。例如,公司可以使用圖形數(shù)據(jù)庫從社交媒體中挖掘關(guān)于客戶的數(shù)據(jù)。

訪問數(shù)據(jù)庫:DBMS和RDBMS

數(shù)據(jù)庫管理系統(tǒng)(DBMS)是一種允許您定義、操作、檢索和管理存儲在數(shù)據(jù)庫中的數(shù)據(jù)的軟件。

關(guān)系數(shù)據(jù)庫管理系統(tǒng)(RDBMS)是上世紀(jì)70年代開發(fā)的一種基于關(guān)系模型的數(shù)據(jù)庫管理軟件,目前仍然是最流行的數(shù)據(jù)庫管理方法。

Microsoft SQL Server、Oracle數(shù)據(jù)庫、IBM DB2和MySQL是企業(yè)用戶最常用的RDBMS產(chǎn)品。DBMS技術(shù)始于20世紀(jì)60年代,支持分層數(shù)據(jù)庫,包括IBM的信息管理系統(tǒng)和CA的集成數(shù)據(jù)庫管理系統(tǒng)。一個關(guān)系數(shù)據(jù)庫管理系統(tǒng)(RDBMS)是一種數(shù)據(jù)庫管理軟件是在20世紀(jì)70年代開發(fā)的,基于關(guān)系模式,仍然是管理數(shù)據(jù)庫的最普遍的方式。

希望能幫助你還請及時采納謝謝

什么是NoSQL數(shù)據(jù)庫?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,

泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲。

(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 關(guān)系型數(shù)據(jù)庫與NoSQL的區(qū)別?

3.1 RDBMS

高度組織化結(jié)構(gòu)化數(shù)據(jù)

結(jié)構(gòu)化查詢語言(SQL)

數(shù)據(jù)和關(guān)系都存儲在單獨的表中。

數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言

嚴(yán)格的一致性

基礎(chǔ)事務(wù)

ACID

關(guān)系型數(shù)據(jù)庫遵循ACID規(guī)則

事務(wù)在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:

A (Atomicity) 原子性

原子性很容易理解,也就是說事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個操作失敗,整個事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。

C (Consistency) 一致性

一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務(wù)的運行不會改變數(shù)據(jù)庫原本的一致性約束。

I (Isolation) 獨立性

所謂的獨立性是指并發(fā)的事務(wù)之間不會互相影響,如果一個事務(wù)要訪問的數(shù)據(jù)正在被另外一個事務(wù)修改,只要另外一個事務(wù)未提交,它所訪問的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事務(wù)提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機也不會丟失。

3.2 NoSQL

代表著不僅僅是SQL

沒有聲明性查詢語言

沒有預(yù)定義的模式

鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫

最終一致性,而非ACID屬性

非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)

CAP定理

高性能,高可用性和可伸縮性

分布式數(shù)據(jù)庫中的CAP原理(了解)

CAP定理:

Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的

Availability(可用性), 好的響應(yīng)性能

Partition tolerance(分區(qū)容錯性) 可靠性

P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運作。

定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。

CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,

因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:

CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴展性上不太強大。

CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。

AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐σ恢滦砸蟮鸵恍?。

CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。

而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。

所以我們只能在一致性和可用性之間進行權(quán)衡,沒有NoSQL系統(tǒng)能同時保證這三點。

說明:C:強一致性 A:高可用性 P:分布式容忍性

舉例:

CA:傳統(tǒng)Oracle數(shù)據(jù)庫

AP:大多數(shù)網(wǎng)站架構(gòu)的選擇

CP:Redis、Mongodb

注意:分布式架構(gòu)的時候必須做出取舍。

一致性和可用性之間取一個平衡。多余大多數(shù)web應(yīng)用,其實并不需要強一致性。

因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。

4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用

當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。

代表項目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型機,很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設(shè)備,也很貴的。

難點:

數(shù)據(jù)類型多樣性。

數(shù)據(jù)源多樣性和變化重構(gòu)。

數(shù)據(jù)源改造而服務(wù)平臺不需要大面積重構(gòu)。

什么是NoSQL數(shù)據(jù)庫

什么是NoSQL數(shù)據(jù)庫?從名稱“非SQL”或“非關(guān)系型”衍生而來,這些數(shù)據(jù)庫不使用類似SQL的查詢語言,通常稱為結(jié)構(gòu)化存儲。這些數(shù)據(jù)庫自1960年就已經(jīng)存在,但是直到現(xiàn)在一些大公司(例如Google和Facebook)開始使用它們時,這些數(shù)據(jù)庫才流行起來。該數(shù)據(jù)庫最明顯的優(yōu)勢是擺脫了一組固定的列、連接和類似SQL的查詢語言的限制。有時,NoSQL這個名稱也可能表示“不僅僅SQL”,來確保它們可能支持SQL。 NoSQL數(shù)據(jù)庫使用諸如鍵值、寬列、圖形或文檔之類的數(shù)據(jù)結(jié)構(gòu),并且可以如JSON之類的不同格式存儲。

目前哪些NoSQL數(shù)據(jù)庫應(yīng)用廣泛,各有什么特點

特點:

它們可以處理超大量的數(shù)據(jù)。

它們運行在便宜的PC服務(wù)器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負載管理等眾多技術(shù)。”

Intel

和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠的路要走?!?/p>

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

AMPLab

通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學(xué)進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。

nosql數(shù)據(jù)庫的四種類型

nosql數(shù)據(jù)庫的四種類型如下:

1.key-value鍵值存儲數(shù)據(jù)庫:

相關(guān)產(chǎn)品: Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached.

主要應(yīng)用: 內(nèi)容緩存,處理大量數(shù)據(jù)的高負載訪問,也用于系統(tǒng)日志。

優(yōu)點:查找速度快,大量操作時性能高。

2.列存儲數(shù)據(jù)庫:

相關(guān)產(chǎn)品: BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS.

主要應(yīng)用: 分布式數(shù)據(jù)的儲存與管理。

優(yōu)點:查找速度快,可擴展性強,容易進行分布式擴展。

缺點:功能相對局限。

3.文檔型數(shù)據(jù)庫

相關(guān)產(chǎn)品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit.

主要應(yīng)用: web應(yīng)用,管理面向文檔的數(shù)據(jù)或者類似的半結(jié)構(gòu)化數(shù)據(jù)。

優(yōu)點:數(shù)據(jù)結(jié)構(gòu)靈活,表結(jié)構(gòu)可變,復(fù)雜性低。

缺點:查詢效率低,且缺乏統(tǒng)一的查詢語言。

4.Graph圖形數(shù)據(jù)庫

相關(guān)產(chǎn)品: Neo4J、OrientDB、InfoGrid、GraphDB.

主要應(yīng)用: 復(fù)雜,互連接,低結(jié)構(gòu)化的圖結(jié)構(gòu)場合, 專注構(gòu)建關(guān)系圖譜。

優(yōu)點: 利用圖結(jié)構(gòu)相關(guān)算法, 可用于構(gòu)建復(fù)雜的關(guān)系圖譜。

缺點: 復(fù)雜度高。

本文題目:nosql數(shù)據(jù)庫計算,nosql數(shù)據(jù)庫技術(shù)
轉(zhuǎn)載來于:http://www.rwnh.cn/article6/dsijdog.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供商城網(wǎng)站、網(wǎng)站維護Google、小程序開發(fā)、網(wǎng)站設(shè)計、ChatGPT

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

小程序開發(fā)
莒南县| 溆浦县| 山西省| 无为县| 休宁县| 龙陵县| 洛川县| 宿迁市| 本溪| 于田县| 泰和县| 抚宁县| 江安县| 宜春市| 怀来县| 高碑店市| 光泽县| 翼城县| 灵宝市| 澜沧| 曲麻莱县| 融水| 浮梁县| 额尔古纳市| 赤壁市| 林口县| 易门县| 惠水县| 星子县| 锡林浩特市| 茶陵县| 页游| 珠海市| 临沭县| 西城区| 乌鲁木齐县| 阿图什市| 宣威市| 盐源县| 克东县| 和平区|