中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

寫給大數(shù)據(jù)開發(fā)初學(xué)者的話|附教程

2024-04-16    分類: 網(wǎng)站建設(shè)

導(dǎo)讀:第一章:初識(shí)Hadoop第二章:更高效的WordCount第三章:把別處的數(shù)據(jù)搞到Hadoop上第四章:把Hadoop上的數(shù)據(jù)搞到別處去第五章:快一點(diǎn)吧,我的SQL第六章:一夫多妻制第七章:越來越多的分析任務(wù)第八章:我的數(shù)據(jù)要實(shí)時(shí)第九章:我的數(shù)據(jù)要對外第十章:牛逼高大上的機(jī)器學(xué)習(xí)

其實(shí)這就是想告訴你的大數(shù)據(jù)的三個(gè)發(fā)展方向,平臺(tái)搭建/優(yōu)化/運(yùn)維/監(jiān)控、大數(shù)據(jù)開發(fā)/設(shè)計(jì)/架構(gòu)、數(shù)據(jù)分析/挖掘。請不要問我哪個(gè)容易,哪個(gè)前景好,哪個(gè)錢多。

數(shù)據(jù)量大,TB->PB數(shù)據(jù)類型繁多,結(jié)構(gòu)化、非結(jié)構(gòu)化文本、日志、視頻、圖片、地理位置等;商業(yè)價(jià)值高,但是這種價(jià)值需要在海量數(shù)據(jù)之上,通過數(shù)據(jù)分析與機(jī)器學(xué)習(xí)更快速的挖掘出來;處理時(shí)效性高,海量數(shù)據(jù)的處理需求不再局限在離線計(jì)算當(dāng)中。

現(xiàn)如今,正式為了應(yīng)對大數(shù)據(jù)的這幾個(gè)特點(diǎn),開源的大數(shù)據(jù)框架越來越多,越來越強(qiáng),先列舉一些常見的:

文件存儲(chǔ):Hadoop HDFS、Tachyon、KFS

離線計(jì)算:Hadoop MapReduce、Spark

流式、實(shí)時(shí)計(jì)算:Storm、Spark Streaming、S4、Heron

資源管理:YARN、Mesos

日志收集:Flume、Scribe、Logstash、Kibana

消息系統(tǒng):Kafka、StormMQ、ZeroMQ、RabbitMQ

查詢分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

分布式協(xié)調(diào)服務(wù):Zookeeper

集群管理與監(jiān)控:Ambari、Ganglia、Nagios、Cloudera Manager

數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí):Mahout、Spark MLLib

數(shù)據(jù)同步:Sqoop

任務(wù)調(diào)度:Oozie

……

眼花了吧,上面的有30多種吧,別說精通了,全部都會(huì)使用的,估計(jì)也沒幾個(gè)。

就我個(gè)人而言,主要經(jīng)驗(yàn)是在第二個(gè)方向(開發(fā)/設(shè)計(jì)/架構(gòu)),且聽聽我的建議吧。

第一章:初識(shí)Hadoop

1.1 學(xué)會(huì)百度與Google

不論遇到什么問題,先試試搜索并自己解決。

Google選,翻不過去的,就用百度吧。

1.2 參考資料選官方文檔

特別是對于入門來說,官方文檔永遠(yuǎn)是選文檔。

相信搞這塊的大多是文化人,英文湊合就行,實(shí)在看不下去的,請參考第一步。

1.3 先讓Hadoop跑起來

Hadoop可以算是大數(shù)據(jù)存儲(chǔ)和計(jì)算的開山鼻祖,現(xiàn)在大多開源的大數(shù)據(jù)框架都依賴Hadoop或者與它能很好的兼容。

關(guān)于Hadoop,你至少需要搞清楚以下是什么:

Hadoop 1.0、Hadoop 2.0MapReduce、HDFSNameNode、DataNodeJobTracker、TaskTrackerYarn、ResourceManager、NodeManager

自己搭建Hadoop,請使用第一步和第二步,能讓它跑起來就行。

建議先使用安裝包命令行安裝,不要使用管理工具安裝。

另外:Hadoop1.0知道它就行了,現(xiàn)在都用Hadoop 2.0.

1.4 試試使用Hadoop

HDFS目錄操作命令;

上傳、下載文件命令;

提交運(yùn)行MapReduce示例程序;

打開Hadoop WEB界面,查看Job運(yùn)行狀態(tài),查看Job運(yùn)行日志。

知道Hadoop的系統(tǒng)日志在哪里。

1.5 你該了解它們的原理了

MapReduce:如何分而治之;

HDFS:數(shù)據(jù)到底在哪里,什么是副本;

Yarn到底是什么,它能干什么;

NameNode到底在干些什么;

ResourceManager到底在干些什么;

1.6 自己寫一個(gè)MapReduce程序

請仿照WordCount例子,自己寫一個(gè)(照抄也行)WordCount程序,

打包并提交到Hadoop運(yùn)行。

你不會(huì)Java?Shell、Python都可以,有個(gè)東西叫Hadoop Streaming。

如果你認(rèn)真完成了以上幾步,恭喜你,你的一只腳已經(jīng)進(jìn)來了。

第二章:更高效的WordCount

2.1 學(xué)點(diǎn)SQL吧

你知道數(shù)據(jù)庫嗎?你會(huì)寫SQL嗎?

如果不會(huì),請學(xué)點(diǎn)SQL吧。

2.2 SQL版WordCount

在1.6中,你寫(或者抄)的WordCount一共有幾行代碼?

給你看看我的:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

這便是SQL的魅力,編程需要幾十行,甚至上百行代碼,我這一句就搞定;使用SQL處理分析Hadoop上的數(shù)據(jù),方便、高效、易上手、更是趨勢。不論是離線計(jì)算還是實(shí)時(shí)計(jì)算,越來越多的大數(shù)據(jù)處理框架都在積極提供SQL接口。

2.3 SQL On Hadoop之Hive

什么是Hive?官方給的解釋是:

The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

為什么說Hive是數(shù)據(jù)倉庫工具,而不是數(shù)據(jù)庫工具呢?有的朋友可能不知道數(shù)據(jù)倉庫,數(shù)據(jù)倉庫是邏輯上的概念,底層使用的是數(shù)據(jù)庫,數(shù)據(jù)倉庫中的數(shù)據(jù)有這兩個(gè)特點(diǎn):最全的歷史數(shù)據(jù)(海量)、相對穩(wěn)定的;所謂相對穩(wěn)定,指的是數(shù)據(jù)倉庫不同于業(yè)務(wù)系統(tǒng)數(shù)據(jù)庫,數(shù)據(jù)經(jīng)常會(huì)被更新,數(shù)據(jù)一旦進(jìn)入數(shù)據(jù)倉庫,很少會(huì)被更新和刪除,只會(huì)被大量查詢。而Hive,也是具備這兩個(gè)特點(diǎn),因此,Hive適合做海量數(shù)據(jù)的數(shù)據(jù)倉庫工具,而不是數(shù)據(jù)庫工具。

2.4 安裝配置Hive

請參考1.1 和 1.2 完成Hive的安裝配置??梢哉_M(jìn)入Hive命令行。

2.5 試試使用Hive

請參考1.1 和 1.2 ,在Hive中創(chuàng)建wordcount表,并運(yùn)行2.2中的SQL語句。

在Hadoop WEB界面中找到剛才運(yùn)行的SQL任務(wù)。

看SQL查詢結(jié)果是否和1.4中MapReduce中的結(jié)果一致。

2.6 Hive是怎么工作的

明明寫的是SQL,為什么Hadoop WEB界面中看到的是MapReduce任務(wù)?

2.7 學(xué)會(huì)Hive的基本命令

創(chuàng)建、刪除表;

加載數(shù)據(jù)到表;

下載Hive表的數(shù)據(jù);

請參考1.2,學(xué)習(xí)更多關(guān)于Hive的語法和命令。

如果你已經(jīng)按照《寫給大數(shù)據(jù)開發(fā)初學(xué)者的話》中第一章和第二章的流程認(rèn)真完整的走了一遍,那么你應(yīng)該已經(jīng)具備以下技能和知識(shí)點(diǎn):

0和Hadoop2.0的區(qū)別;MapReduce的原理(還是那個(gè)經(jīng)典的題目,一個(gè)10G大小的文件,給定1G大小的內(nèi)存,如何使用Java程序統(tǒng)計(jì)出現(xiàn)次數(shù)最多的10個(gè)單詞及次數(shù));HDFS讀寫數(shù)據(jù)的流程;向HDFS中PUT數(shù)據(jù);從HDFS中下載數(shù)據(jù);自己會(huì)寫簡單的MapReduce程序,運(yùn)行出現(xiàn)問題,知道在哪里查看日志;會(huì)寫簡單的SELECT、WHERE、GROUP BY等SQL語句;Hive SQL轉(zhuǎn)換成MapReduce的大致流程;Hive中常見的語句:創(chuàng)建表、刪除表、往表中加載數(shù)據(jù)、分區(qū)、將表中數(shù)據(jù)下載到本地;

從上面的學(xué)習(xí),你已經(jīng)了解到,HDFS是Hadoop提供的分布式存儲(chǔ)框架,它可以用來存儲(chǔ)海量數(shù)據(jù),MapReduce是Hadoop提供的分布式計(jì)算框架,它可以用來統(tǒng)計(jì)和分析HDFS上的海量數(shù)據(jù),而Hive則是SQL On Hadoop,Hive提供了SQL接口,開發(fā)人員只需要編寫簡單易上手的SQL語句,Hive負(fù)責(zé)把SQL翻譯成MapReduce,提交運(yùn)行。

此時(shí),你的大數(shù)據(jù)平臺(tái)是這樣的:

那么問題來了,海量數(shù)據(jù)如何到HDFS上呢?

第三章:把別處的數(shù)據(jù)搞到Hadoop上

此處也可以叫做數(shù)據(jù)采集,把各個(gè)數(shù)據(jù)源的數(shù)據(jù)采集到Hadoop上。

3.1 HDFS PUT命令

這個(gè)在前面你應(yīng)該已經(jīng)使用過了。

put命令在實(shí)際環(huán)境中也比較常用,通常配合shell、python等腳本語言來使用。

建議熟練掌握。

3.2 HDFS API

HDFS提供了寫數(shù)據(jù)的API,自己用編程語言將數(shù)據(jù)寫入HDFS,put命令本身也是使用API。

實(shí)際環(huán)境中一般自己較少編寫程序使用API來寫數(shù)據(jù)到HDFS,通常都是使用其他框架封裝好的方法。比如:Hive中的INSERT語句,Spark中的saveAsTextfile等。

建議了解原理,會(huì)寫Demo。

3.3 Sqoop

Sqoop是一個(gè)主要用于Hadoop/Hive與傳統(tǒng)關(guān)系型數(shù)據(jù)庫Oracle/MySQL/SQLServer等之間進(jìn)行數(shù)據(jù)交換的開源框架。

就像Hive把SQL翻譯成MapReduce一樣,Sqoop把你指定的參數(shù)翻譯成MapReduce,提交到Hadoop運(yùn)行,完成Hadoop與其他數(shù)據(jù)庫之間的數(shù)據(jù)交換。

自己下載和配置Sqoop(建議先使用Sqoop1,Sqoop2比較復(fù)雜)。

了解Sqoop常用的配置參數(shù)和方法。

使用Sqoop完成從MySQL同步數(shù)據(jù)到HDFS;

使用Sqoop完成從MySQL同步數(shù)據(jù)到Hive表;

PS:如果后續(xù)選型確定使用Sqoop作為數(shù)據(jù)交換工具,那么建議熟練掌握,否則,了解和會(huì)用Demo即可。

3.4 Flume

Flume是一個(gè)分布式的海量日志采集和傳輸框架,因?yàn)椴杉蛡鬏斂蚣?,所以它并不適合關(guān)系型數(shù)據(jù)庫的數(shù)據(jù)采集和傳輸。

Flume可以實(shí)時(shí)的從網(wǎng)絡(luò)協(xié)議、消息系統(tǒng)、文件系統(tǒng)采集日志,并傳輸?shù)紿DFS上。

因此,如果你的業(yè)務(wù)有這些數(shù)據(jù)源的數(shù)據(jù),并且需要實(shí)時(shí)的采集,那么就應(yīng)該考慮使用Flume。

下載和配置Flume。

使用Flume監(jiān)控一個(gè)不斷追加數(shù)據(jù)的文件,并將數(shù)據(jù)傳輸?shù)紿DFS;

PS:Flume的配置和使用較為復(fù)雜,如果你沒有足夠的興趣和耐心,可以先跳過Flume。

3.5 阿里開源的DataX

之所以介紹這個(gè),是因?yàn)槲覀児灸壳笆褂玫腍adoop與關(guān)系型數(shù)據(jù)庫數(shù)據(jù)交換的工具,就是之前基于DataX開發(fā)的,非常好用。

可以參考我的博文《異構(gòu)數(shù)據(jù)源海量數(shù)據(jù)交換工具-Taobao DataX 下載和使用》。

現(xiàn)在DataX已經(jīng)是3.0版本,支持很多數(shù)據(jù)源。

你也可以在其之上做二次開發(fā)。

PS:有興趣的可以研究和使用一下,對比一下它與Sqoop。

如果你認(rèn)真完成了上面的學(xué)習(xí)和實(shí)踐,此時(shí),你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

第四章:把Hadoop上的數(shù)據(jù)搞到別處去

前面介紹了如何把數(shù)據(jù)源的數(shù)據(jù)采集到Hadoop上,數(shù)據(jù)到Hadoop上之后,便可以使用Hive和MapReduce進(jìn)行分析了。那么接下來的問題是,分析完的結(jié)果如何從Hadoop上同步到其他系統(tǒng)和應(yīng)用中去呢?

其實(shí),此處的方法和第三章基本一致的。

4.1 HDFS GET命令

把HDFS上的文件GET到本地。需要熟練掌握。

4.2 HDFS API

同3.2.

4.3 Sqoop

同3.3.

使用Sqoop完成將HDFS上的文件同步到MySQL;

使用Sqoop完成將Hive表中的數(shù)據(jù)同步到MySQL;

4.4 DataX

同3.5.

如果你認(rèn)真完成了上面的學(xué)習(xí)和實(shí)踐,此時(shí),你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

如果你已經(jīng)按照《寫給大數(shù)據(jù)開發(fā)初學(xué)者的話2》中第三章和第四章的流程認(rèn)真完整的走了一遍,那么你應(yīng)該已經(jīng)具備以下技能和知識(shí)點(diǎn):

知道如何把已有的數(shù)據(jù)采集到HDFS上,包括離線采集和實(shí)時(shí)采集;

你已經(jīng)知道sqoop(或者還有DataX)是HDFS和其他數(shù)據(jù)源之間的數(shù)據(jù)交換工具;

你已經(jīng)知道flume可以用作實(shí)時(shí)的日志采集。

從前面的學(xué)習(xí),對于大數(shù)據(jù)平臺(tái),你已經(jīng)掌握的不少的知識(shí)和技能,搭建Hadoop集群,把數(shù)據(jù)采集到Hadoop上,使用Hive和MapReduce來分析數(shù)據(jù),把分析結(jié)果同步到其他數(shù)據(jù)源。

接下來的問題來了,Hive使用的越來越多,你會(huì)發(fā)現(xiàn)很多不爽的地方,特別是速度慢,大多情況下,明明我的數(shù)據(jù)量很小,它都要申請資源,啟動(dòng)MapReduce來執(zhí)行。

第五章:快一點(diǎn)吧,我的SQL

其實(shí)大家都已經(jīng)發(fā)現(xiàn)Hive后臺(tái)使用MapReduce作為執(zhí)行引擎,實(shí)在是有點(diǎn)慢。

因此SQL On Hadoop的框架越來越多,按我的了解,最常用的按照流行度依次為SparkSQL、Impala和Presto.

這三種框架基于半內(nèi)存或者全內(nèi)存,提供了SQL接口來快速查詢分析Hadoop上的數(shù)據(jù)。關(guān)于三者的比較,請參考1.1.

我們目前使用的是SparkSQL,至于為什么用SparkSQL,原因大概有以下吧:

使用Spark還做了其他事情,不想引入過多的框架;

Impala對內(nèi)存的需求太大,沒有過多資源部署;

5.1 關(guān)于Spark和SparkSQL

什么是Spark,什么是SparkSQL。

Spark有的核心概念及名詞解釋。

SparkSQL和Spark是什么關(guān)系,SparkSQL和Hive是什么關(guān)系。

SparkSQL為什么比Hive跑的快。

5.2 如何部署和運(yùn)行SparkSQL

Spark有哪些部署模式?

如何在Yarn上運(yùn)行SparkSQL?

使用SparkSQL查詢Hive中的表。

PS: Spark不是一門短時(shí)間內(nèi)就能掌握的技術(shù),因此建議在了解了Spark之后,可以先從SparkSQL入手,循序漸進(jìn)。

關(guān)于Spark和SparkSQL,可參考http://lxw1234.com/archives/category/spark

如果你認(rèn)真完成了上面的學(xué)習(xí)和實(shí)踐,此時(shí),你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

第六章:一夫多妻制

請不要被這個(gè)名字所誘惑。其實(shí)我想說的是數(shù)據(jù)的一次采集、多次消費(fèi)。

在實(shí)際業(yè)務(wù)場景下,特別是對于一些監(jiān)控日志,想即時(shí)的從日志中了解一些指標(biāo)(關(guān)于實(shí)時(shí)計(jì)算,后面章節(jié)會(huì)有介紹),這時(shí)候,從HDFS上分析就太慢了,盡管是通過Flume采集的,但Flume也不能間隔很短就往HDFS上滾動(dòng)文件,這樣會(huì)導(dǎo)致小文件特別多。

為了滿足數(shù)據(jù)的一次采集、多次消費(fèi)的需求,這里要說的便是Kafka。

6.1 關(guān)于Kafka

什么是Kafka?

Kafka的核心概念及名詞解釋。

6.2 如何部署和使用Kafka

使用單機(jī)部署Kafka,并成功運(yùn)行自帶的生產(chǎn)者和消費(fèi)者例子。

使用Java程序自己編寫并運(yùn)行生產(chǎn)者和消費(fèi)者程序。

Flume和Kafka的集成,使用Flume監(jiān)控日志,并將日志數(shù)據(jù)實(shí)時(shí)發(fā)送至Kafka。

如果你認(rèn)真完成了上面的學(xué)習(xí)和實(shí)踐,此時(shí),你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

這時(shí),使用Flume采集的數(shù)據(jù),不是直接到HDFS上,而是先到Kafka,Kafka中的數(shù)據(jù)可以由多個(gè)消費(fèi)者同時(shí)消費(fèi),其中一個(gè)消費(fèi)者,就是將數(shù)據(jù)同步到HDFS。

如果你已經(jīng)按照《寫給大數(shù)據(jù)開發(fā)初學(xué)者的話3》中第五章和第六章的流程認(rèn)真完整的走了一遍,那么你應(yīng)該已經(jīng)具備以下技能和知識(shí)點(diǎn):

為什么Spark比MapReduce快。使用SparkSQL代替Hive,更快的運(yùn)行SQL。使用Kafka完成數(shù)據(jù)的一次收集,多次消費(fèi)架構(gòu)。自己可以寫程序完成Kafka的生產(chǎn)者和消費(fèi)者。

從前面的學(xué)習(xí),你已經(jīng)掌握了大數(shù)據(jù)平臺(tái)中的數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)和計(jì)算、數(shù)據(jù)交換等大部分技能,而這其中的每一步,都需要一個(gè)任務(wù)(程序)來完成,各個(gè)任務(wù)之間又存在一定的依賴性,比如,必須等數(shù)據(jù)采集任務(wù)成功完成后,數(shù)據(jù)計(jì)算任務(wù)才能開始運(yùn)行。如果一個(gè)任務(wù)執(zhí)行失敗,需要給開發(fā)運(yùn)維人員發(fā)送告警,同時(shí)需要提供完整的日志來方便查錯(cuò)。

第七章:越來越多的分析任務(wù)

不僅僅是分析任務(wù),數(shù)據(jù)采集、數(shù)據(jù)交換同樣是一個(gè)個(gè)的任務(wù)。這些任務(wù)中,有的是定時(shí)觸發(fā),有點(diǎn)則需要依賴其他任務(wù)來觸發(fā)。當(dāng)平臺(tái)中有幾百上千個(gè)任務(wù)需要維護(hù)和運(yùn)行時(shí)候,僅僅靠crontab遠(yuǎn)遠(yuǎn)不夠了,這時(shí)便需要一個(gè)調(diào)度監(jiān)控系統(tǒng)來完成這件事。調(diào)度監(jiān)控系統(tǒng)是整個(gè)數(shù)據(jù)平臺(tái)的中樞系統(tǒng),類似于AppMaster,負(fù)責(zé)分配和監(jiān)控任務(wù)。

7.1 Apache Oozie

1. Oozie是什么?有哪些功能?

2. Oozie可以調(diào)度哪些類型的任務(wù)(程序)?

3. Oozie可以支持哪些任務(wù)觸發(fā)方式?

4. 安裝配置Oozie。

7.2 其他開源的任務(wù)調(diào)度系統(tǒng)

Azkaban:

https://azkaban.github.io/

light-task-scheduler:

https://github.com/ltsopensource/light-task-scheduler

Zeus:

https://github.com/alibaba/zeus

等等……

另外,我這邊是之前單獨(dú)開發(fā)的任務(wù)調(diào)度與監(jiān)控系統(tǒng),具體請參考《大數(shù)據(jù)平臺(tái)任務(wù)調(diào)度與監(jiān)控系統(tǒng)》.

如果你認(rèn)真完成了上面的學(xué)習(xí)和實(shí)踐,此時(shí),你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

第八章:我的數(shù)據(jù)要實(shí)時(shí)

在第六章介紹Kafka的時(shí)候提到了一些需要實(shí)時(shí)指標(biāo)的業(yè)務(wù)場景,實(shí)時(shí)基本可以分為絕對實(shí)時(shí)和準(zhǔn)實(shí)時(shí),絕對實(shí)時(shí)的延遲要求一般在毫秒級(jí),準(zhǔn)實(shí)時(shí)的延遲要求一般在秒、分鐘級(jí)。對于需要絕對實(shí)時(shí)的業(yè)務(wù)場景,用的比較多的是Storm,對于其他準(zhǔn)實(shí)時(shí)的業(yè)務(wù)場景,可以是Storm,也可以是Spark Streaming。當(dāng)然,如果可以的話,也可以自己寫程序來做。

8.1 Storm

1. 什么是Storm?有哪些可能的應(yīng)用場景?

2. Storm由哪些核心組件構(gòu)成,各自擔(dān)任什么角色?

3. Storm的簡單安裝和部署。

4. 自己編寫Demo程序,使用Storm完成實(shí)時(shí)數(shù)據(jù)流計(jì)算。

8.2 Spark Streaming

1. 什么是Spark Streaming,它和Spark是什么關(guān)系?

2. Spark Streaming和Storm比較,各有什么優(yōu)缺點(diǎn)?

3. 使用Kafka + Spark Streaming,完成實(shí)時(shí)計(jì)算的Demo程序。

如果你認(rèn)真完成了上面的學(xué)習(xí)和實(shí)踐,此時(shí),你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

至此,你的大數(shù)據(jù)平臺(tái)底層架構(gòu)已經(jīng)成型了,其中包括了數(shù)據(jù)采集、數(shù)據(jù)存儲(chǔ)與計(jì)算(離線和實(shí)時(shí))、數(shù)據(jù)同步、任務(wù)調(diào)度與監(jiān)控這幾大模塊。接下來是時(shí)候考慮如何更好的對外提供數(shù)據(jù)了。

第九章:我的數(shù)據(jù)要對外

通常對外(業(yè)務(wù))提供數(shù)據(jù)訪問,大體上包含以下方面:

離線:比如,每天將前一天的數(shù)據(jù)提供到指定的數(shù)據(jù)源(DB、FILE、FTP)等;離線數(shù)據(jù)的提供可以采用Sqoop、DataX等離線數(shù)據(jù)交換工具。

實(shí)時(shí):比如,在線網(wǎng)站的推薦系統(tǒng),需要實(shí)時(shí)從數(shù)據(jù)平臺(tái)中獲取給用戶的推薦數(shù)據(jù),這種要求延時(shí)非常低(50毫秒以內(nèi))。

根據(jù)延時(shí)要求和實(shí)時(shí)數(shù)據(jù)的查詢需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。

OLAP分析:OLAP除了要求底層的數(shù)據(jù)模型比較規(guī)范,另外,對查詢的響應(yīng)速度要求也越來越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的數(shù)據(jù)模型比較規(guī)模,那么Kylin是最好的選擇。

即席查詢:即席查詢的數(shù)據(jù)比較隨意,一般很難建立通用的數(shù)據(jù)模型,因此可能的方案有:Impala、Presto、SparkSQL。

這么多比較成熟的框架和方案,需要結(jié)合自己的業(yè)務(wù)需求及數(shù)據(jù)平臺(tái)技術(shù)架構(gòu),選擇合適的。原則只有一個(gè):越簡單越穩(wěn)定的,就是最好的。

如果你已經(jīng)掌握了如何很好的對外(業(yè)務(wù))提供數(shù)據(jù),那么你的大數(shù)據(jù)平臺(tái)應(yīng)該是這樣的:

第十章:牛逼高大上的機(jī)器學(xué)習(xí)

關(guān)于這塊,我這個(gè)門外漢也只能是簡單介紹一下了。數(shù)學(xué)專業(yè)畢業(yè)的我非常慚愧,很后悔當(dāng)時(shí)沒有好好學(xué)數(shù)學(xué)。

在我們的業(yè)務(wù)中,遇到的能用機(jī)器學(xué)習(xí)解決的問題大概這么三類:

分類問題:包括二分類和多分類,二分類就是解決了預(yù)測的問題,就像預(yù)測一封郵件是否垃圾郵件;多分類解決的是文本的分類;聚類問題:從用戶搜索過的關(guān)鍵詞,對用戶進(jìn)行大概的歸類。推薦問題:根據(jù)用戶的歷史瀏覽和點(diǎn)擊行為進(jìn)行相關(guān)推薦。

大多數(shù)行業(yè),使用機(jī)器學(xué)習(xí)解決的,也就是這幾類問題。

入門學(xué)習(xí)線路:

數(shù)學(xué)基礎(chǔ);

機(jī)器學(xué)習(xí)實(shí)戰(zhàn)(Machine Learning in Action),懂Python最好;

SparkMlLib提供了一些封裝好的算法,以及特征處理、特征選擇的方法。

機(jī)器學(xué)習(xí)確實(shí)牛逼高大上,也是我學(xué)習(xí)的目標(biāo)。

那么,可以把機(jī)器學(xué)習(xí)部分也加進(jìn)你的大數(shù)據(jù)平臺(tái)了。

慧都大數(shù)據(jù)為企業(yè)提供大數(shù)據(jù)平臺(tái)搭建與實(shí)施,多行業(yè)大數(shù)據(jù)解決方案與一體化技術(shù)服務(wù),實(shí)現(xiàn)數(shù)據(jù)驅(qū)動(dòng)發(fā)展,通過數(shù)據(jù)創(chuàng)造業(yè)務(wù)價(jià)值。歡迎溝通交流!

非常感謝您讀完創(chuàng)新互聯(lián)的這篇文章:"寫給大數(shù)據(jù)開發(fā)初學(xué)者的話|附教程",僅為提供更多信息供用戶參考使用或?yàn)閷W(xué)習(xí)交流的方便。我們公司提供:網(wǎng)站建設(shè)、網(wǎng)站制作、官網(wǎng)建設(shè)、SEO優(yōu)化、小程序制作等服務(wù),歡迎聯(lián)系我們提供您的需求。

新聞名稱:寫給大數(shù)據(jù)開發(fā)初學(xué)者的話|附教程
URL標(biāo)題:http://www.rwnh.cn/news37/323837.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供域名注冊品牌網(wǎng)站設(shè)計(jì)、軟件開發(fā)、企業(yè)網(wǎng)站制作用戶體驗(yàn)、定制網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

手機(jī)網(wǎng)站建設(shè)
永城市| 察雅县| 汉源县| 石棉县| 道孚县| 南京市| 江山市| 宝兴县| 维西| 襄汾县| 宁远县| 萨迦县| 廊坊市| 仙游县| 墨竹工卡县| 石狮市| 报价| 孟州市| 清新县| 田林县| 东乌| 冕宁县| 河津市| 洛南县| 鄂伦春自治旗| 苍山县| 肇源县| 徐汇区| 丹江口市| 冀州市| 格尔木市| 贵德县| 扶余县| 安远县| 松潘县| 疏附县| 丹棱县| 延吉市| 定西市| 全南县| 雅江县|