中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

人工智能加持,已經(jīng)擋不住科學(xué)的步伐了

2021-02-16    分類: 網(wǎng)站建設(shè)

最新的AI算法正在探測星系的演化、計算量子波函數(shù)、發(fā)現(xiàn)新的化合物等等。還有什么是事情是科學(xué)家不能自動化的呢?

沒有人類或一個團隊能夠完全跟上當(dāng)今許多物理學(xué)和天文學(xué)實驗所產(chǎn)生的海量信息。他們中的一些人每天都要記錄TB的數(shù)據(jù),而且洪流只會越來越大。 Square Kilometer Array是一臺預(yù)定在20世紀(jì)20年代中期開啟的射電望遠(yuǎn)鏡,每年將產(chǎn)生與整個互聯(lián)網(wǎng)一樣多的數(shù)據(jù)流量。

“洪流”讓許多科學(xué)家轉(zhuǎn)向人工智能尋求幫助。人工神經(jīng)網(wǎng)絡(luò)(人工神經(jīng)網(wǎng)絡(luò) - 模擬大腦功能的神經(jīng)元的計算機模擬網(wǎng)絡(luò))等人工智能系統(tǒng)可以通過最少的人工輸入,就能處理海量數(shù)據(jù),突出異常并檢測人類永遠(yuǎn)無法發(fā)現(xiàn)的模式。

當(dāng)然,使用計算機來輔助科學(xué)研究大約可以追溯到75年前,而通過手工研究數(shù)據(jù)以尋找有意義的模式的方法起源于數(shù)千年前。但是一些科學(xué)家認(rèn)為,機器學(xué)習(xí)和人工智能的最新技術(shù)代表了一種全新的科學(xué)方法。其中一種方法,即生成建模,可以幫助在對觀測數(shù)據(jù)的各種相互矛盾的解釋中找出最可信的理論,這種理論只基于數(shù)據(jù),并且重要的是,沒有任何預(yù)編程的知識,可以在所研究的系統(tǒng)中起作用的物理過程。 生成模型的支持者認(rèn)為它足夠新穎,可以被認(rèn)為是了解宇宙的潛在“第三條道路”。

現(xiàn)在讓我們從腦海中抹去關(guān)于天體物理學(xué)的一切知識。我們在多大程度上可以只使用數(shù)據(jù)本身重新發(fā)現(xiàn)這些知識? Kevin Schawinski

傳統(tǒng)上,我們通過觀察了解了自然??梢宰屑?xì)研究下約翰內(nèi)斯·開普勒(Johannes Kepler)在第谷布拉赫(Tycho Brahe)的行星位置表,并試圖辨別出潛在的模式。(他最終推斷出行星在橢圓軌道上運動。)科學(xué)也通過模擬推進(jìn)。一位天文學(xué)家可能會模擬銀河系及其鄰近星系仙女座星系的運動,并預(yù)測它們將在數(shù)十億年后發(fā)生碰撞。觀察和模擬都有助于科學(xué)家產(chǎn)生假設(shè),然后可以通過進(jìn)一步的觀察進(jìn)行測試,生成的建模不同于這兩種方法。

“它基本上是觀察和模擬之間的第三種方法,”天文物理學(xué)家和生成模型最熱情的支持者之一Kevin Schawinski表示, “這是解決問題的另一種方式?!?/p>

一些科學(xué)家將生成建模和其他新技術(shù)視為傳統(tǒng)科學(xué)的動力工具。但大多數(shù)人都認(rèn)為人工智能正在產(chǎn)生巨大影響,而且它在科學(xué)中的作用只會增長。 Fermi國家加速器實驗室的天體物理學(xué)家Brian Nord使用人工神經(jīng)網(wǎng)絡(luò)來研究宇宙,他們擔(dān)心“人類科學(xué)家沒有什么是不可以實現(xiàn)自動化的”這種論斷。

一代人的發(fā)現(xiàn)

自研究生畢業(yè)以來,Schawinski一直以數(shù)據(jù)驅(qū)動的科學(xué)為名。在攻讀博士學(xué)位期間,他面臨著根據(jù)外觀對數(shù)千個星系進(jìn)行分類的任務(wù)。因為這份工作沒有現(xiàn)成的軟件,所以他決定將其進(jìn)行眾包,因此銀河動物園公民科學(xué)項目誕生了。從2007年開始,普通計算機用戶通過記錄他們對哪個星系屬于哪個類別的好猜測來幫助天文學(xué)家,多數(shù)規(guī)則通常導(dǎo)致正確的分類。該項目取得了成功,但是,正如Schawinski指出的那樣,人工智能已經(jīng)讓它變得過時了:“如今,具備機器學(xué)習(xí)和云計算訪問背景的才華橫溢的科學(xué)家可以在一個下午就完成整個工作?!?/p>

Schawinski在2016年轉(zhuǎn)向了生成建模的強大新工具。從本質(zhì)上講,生成建模會詢問在給定條件X的情況下,你會觀察到結(jié)果Y的可能性有多大。這種方法已被證明是非常有效的。例如,假設(shè)您為生成模型提供一組人臉圖像,每張臉都標(biāo)有人的年齡。當(dāng)計算機程序梳理這些“訓(xùn)練數(shù)據(jù)”時,它開始在較舊的面部之間建立聯(lián)系并增加皺紋的可能性。最終,它可以“老化”它所給予的任何面孔,也就是說,它可以預(yù)測任何年齡的特定面部可能經(jīng)歷的物理變化。

這些面孔都不是真實的。頂行(A)和左列(B)中的面是由生成對抗網(wǎng)絡(luò)(GAN)使用真實面部的構(gòu)建塊元素構(gòu)建的。然后,GAN將A中面部的基本特征(包括其性別、年齡和面部形狀)與B中面部的更精細(xì)特征(例如頭發(fā)顏色和眼睛顏色)相結(jié)合,以在網(wǎng)格的其余部分中創(chuàng)建所有面部。

最著名的生成建模系統(tǒng)是“生成對抗網(wǎng)絡(luò)”(GAN)。在充分暴露于訓(xùn)練數(shù)據(jù)之后,GAN可以修復(fù)已經(jīng)損壞或丟失像素的圖像,或者它們可以使模糊的照片清晰。他們學(xué)會通過競爭來推斷缺失的信息(因此稱為“對抗性”):網(wǎng)絡(luò)的一部分,稱為生成器,生成假數(shù)據(jù),而第二部分,即鑒別器,試圖區(qū)分假數(shù)據(jù)和真實數(shù)據(jù)。隨著程序的運行,兩部分都會越來越好。你可能已經(jīng)看到了最近流傳的一些超現(xiàn)實主義的,GAN制作的“面孔”,正如一個標(biāo)題所說的那樣,“極其真實但是實際上并不存在”的形象。

更廣泛地說,生成建模采用數(shù)據(jù)集(通常是圖像,但并非總是如此),并將每個數(shù)據(jù)分解為一組基本的抽象構(gòu)建塊 - 科學(xué)家將其稱為數(shù)據(jù)的“潛在空間”。該算法操縱潛在空間的元素,看看它如何影響原始數(shù)據(jù),這有助于發(fā)現(xiàn)系統(tǒng)中正在運行的物理過程。

潛在空間的概念是抽象的,難以想象,但作為一個粗略的類比,想想當(dāng)你試圖確定人臉的性別時你的大腦可能在做什么。也許你會注意到發(fā)型、鼻子形狀等,以及你不能輕易用語言表達(dá)的圖案。計算機程序同樣在尋找數(shù)據(jù)中的顯著特征:雖然它不知道小胡子是什么或性別是什么,但是如果它是在數(shù)據(jù)集上訓(xùn)練的,其中一些圖像被標(biāo)記為“男人”或“女人”,并且其中有些人有一個“小胡子”標(biāo)簽,它會很快推斷出一個連接。

在12月發(fā)表于《天文學(xué)與天體物理學(xué)》(Astronomy & Astrophysics)雜志上的一篇論文中,Schawinski和他的蘇黎世聯(lián)邦理工學(xué)院的同事Dennis Turp和Ce Zhang使用生成模型來研究星系在演化過程中所經(jīng)歷的物理變化。(他們使用的軟件對待潛在空間與生成對抗網(wǎng)絡(luò)對待它的方式有所不同,因此技術(shù)上并不是GAN,盡管類似。)他們的模型創(chuàng)建了人工數(shù)據(jù)集,作為測試物理過程假設(shè)的一種方式。例如,他們詢問恒星形成的“淬火” - 形成速率的急劇下降 - 與星系環(huán)境密度的增加有什么關(guān)系。

對于Schawinski來說,關(guān)鍵問題是有多少關(guān)于恒星和星系過程的信息可以單獨從數(shù)據(jù)中挑出來。 “讓我們抹去我們所知道的關(guān)于天體物理學(xué)的一切,”他說。 “我們可以在多大程度上重新發(fā)現(xiàn)這些知識,只使用數(shù)據(jù)本身?”


首先,銀河系的圖像被縮小到它們的潛伏空間;然后,Schawinski可以調(diào)整該空間的一個元素,其方式與星系環(huán)境中的特定變化相對應(yīng) - 例如,周圍環(huán)境的密度。然后他可以重新生成銀河系,看看出現(xiàn)了什么差異。 “所以現(xiàn)在我有一臺假設(shè)生成機器,”他解釋道, “我可以拍攝一大堆最初處于低密度環(huán)境中的星系,并通過這個過程使它們看起來像是在高密度環(huán)境中。”Schawinski、Turp和Zhang發(fā)現(xiàn),當(dāng)星系從低密度到高密度的環(huán)境轉(zhuǎn)變,它們的顏色變得更紅,并且它們的恒星變得更加集中。 Schawinski認(rèn)為,這符合現(xiàn)有的關(guān)于星系的觀測結(jié)果。問題是為什么會這樣。

Schawinski說,下一步還沒有實現(xiàn)自動化:“我必須以一個人類的身份進(jìn)入,然后說,'好吧,什么樣的物理學(xué)可以解釋這種效應(yīng)?”對于這個過程,有兩個看似合理的解釋:也許星系在高密度環(huán)境中變得更紅,因為它們含有更多的塵埃,或者由于恒星形成的減少而變得更紅(換句話說,它們的恒星往往更老)。通過生成模型,兩種想法都可以進(jìn)行測試:潛在空間中與塵埃和恒星形成率相關(guān)的元素被改變,以了解它如何影響星系的顏色。 “答案很明確,更紅的星系是恒星形成的地方,而不是塵埃變化的星系。所以我們應(yīng)該贊成這個解釋?!?/p>

使用生成模型,天體物理學(xué)家可以研究星系從宇宙的低密度區(qū)域到高密度區(qū)域時的變化,以及這些變化導(dǎo)致的物理過程。

該方法與傳統(tǒng)模擬有關(guān),但存在重大差異。 Schawinski表示,模擬“基本上是假設(shè)驅(qū)動的”。 “這種方法的意思是,'我想我知道導(dǎo)致我在系統(tǒng)中看到的所有東西的潛在物理定律是什么。'所以我有一個關(guān)于恒星形成的配方,我有暗物質(zhì)行為的配方,等等。我把所有的假設(shè)放在那里,然后讓模擬運行起來。然后我問:這看起來像現(xiàn)實嗎?“他說,他在生成建模方面所做的是”在某種意義上,與模擬完全相反。我們什么都不知道;我們不想假設(shè)任何事情。我們希望數(shù)據(jù)本身告訴我們可能會發(fā)生什么。”

在這樣的研究中,成功建模顯然并不意味著天文學(xué)家和研究生已經(jīng)成為冗余,但它似乎代表了可以通過人工實現(xiàn)對天體物理學(xué)對象和過程的學(xué)習(xí)程度轉(zhuǎn)變。系統(tǒng)在電子指尖上的功能遠(yuǎn)遠(yuǎn)超過龐大的數(shù)據(jù)庫。 “這不是完全自動化的科學(xué),但它表明我們能夠至少部分地構(gòu)建使科學(xué)過程自動化的工具?!?/p>

生成建模顯然是強大的,但它是否真正代表了一種新的科學(xué)方法,這一問題值得商榷。對于紐約大學(xué)和Flatiron研究所(與Quanta一樣,由Simons基金會資助)的宇宙學(xué)家David Hogg來說,這項技術(shù)令人印象深刻,但最終只是一種從數(shù)據(jù)中提取模式的非常復(fù)雜的方法,這也是天文學(xué)家所擁有的幾個世紀(jì)以來一直在做的事情。換句話說,它是一種先進(jìn)的觀察和分析形式。 Hogg自己的工作,如Schawinski的工作一樣,嚴(yán)重依賴AI;他一直在使用神經(jīng)網(wǎng)絡(luò)根據(jù)恒星的光譜對其進(jìn)行分類,并使用數(shù)據(jù)驅(qū)動模型推斷恒星的其他物理屬性。但他認(rèn)為他的作品以及Schawinski的作品都是久經(jīng)考驗的科學(xué)。 “我不認(rèn)為這是第三種方式,我只是認(rèn)為我們作為一個社區(qū)正在變得越來越復(fù)雜,我們?nèi)绾问褂眠@些數(shù)據(jù)。特別是,越來越好。但在我看來,我的工作仍完全處于觀察模式中。”

勤奮的助手

無論它們在概念上是否具有新穎性,很明顯AI和神經(jīng)網(wǎng)絡(luò)已經(jīng)在當(dāng)代天文學(xué)和物理學(xué)研究中發(fā)揮了關(guān)鍵作用。在海德堡理論研究所,物理學(xué)家Kai Polsterer領(lǐng)導(dǎo)著天文信息學(xué)小組,這是一個專注于新的,以數(shù)據(jù)為中心的天體物理學(xué)方法的研究小組。最近,他們一直在使用機器學(xué)習(xí)算法從星系數(shù)據(jù)集中提取紅移信息,這在以前是一項艱巨的任務(wù)。


Polsterer認(rèn)為這些新的基于人工智能的系統(tǒng)是“勤奮的助手”,可以連續(xù)數(shù)小時梳理數(shù)據(jù)而不會對工作條件感到厭倦或抱怨。他說,這些系統(tǒng)可以完成所有繁瑣乏味的工作,讓你“自己做一些很酷而有趣的科學(xué)”。

但他們并不好。Polstere警告說,算法只能做他們訓(xùn)練過的事情。系統(tǒng)對輸入是“不可知的”。給它一個星系,軟件就可以估計它的紅移和它的年齡,但是給同一個系統(tǒng)提供自拍照或腐爛的魚的圖片,它也會輸出一個(非常錯誤的)年齡。他說,最終人類科學(xué)家的監(jiān)督仍然至關(guān)重要。

對于他而言,Nord在費米實驗室警告說,神經(jīng)網(wǎng)絡(luò)不僅要提供結(jié)果,而且要提供誤差條,就像每個本科生都需要接受訓(xùn)練一樣。他說,在科學(xué)領(lǐng)域,如果你進(jìn)行測量卻不報告相關(guān)誤差的估計,那么沒有人會認(rèn)真對待這些結(jié)果。

像許多人工智能研究人員一樣,Nord也關(guān)注神經(jīng)網(wǎng)絡(luò)產(chǎn)生的結(jié)果的不可穿透性;通常,系統(tǒng)給出一個答案而不提供如何獲得結(jié)果的清晰圖像。

然而,并非每個人都認(rèn)為缺乏透明度必然是一個問題。法國CEA Saclay理論物理研究所的研究員LenkaZdeborová指出,人類的直覺往往同樣難以理解。你看一張照片,立即認(rèn)出一只貓,但其實你不知道自己的大腦是如何思考的,就像是一個黑匣子一樣。

不僅天體物理學(xué)家和宇宙學(xué)家正在向人工智能推動的數(shù)據(jù)驅(qū)動科學(xué)發(fā)展。像Perimeter理論物理研究所和安大略滑鐵盧大學(xué)的Roger Melko這樣的量子物理學(xué)家已經(jīng)使用神經(jīng)網(wǎng)絡(luò)來解決該領(lǐng)域中一些最棘手和最重要的問題,例如如何表示描述a的數(shù)學(xué)“波函數(shù)”多粒子系統(tǒng)。 AI是必不可少的,因為Melko稱之為“維數(shù)的指數(shù)性詛咒。”也就是說,波函數(shù)形式的可能性隨著它描述的系統(tǒng)中的粒子數(shù)量呈指數(shù)增長。難度類似于嘗試在象棋或圍棋這樣的游戲中找出好走法:你試圖向前看下一個走法,想象你的對手會玩什么,然后選擇最好的回應(yīng),但每次動作,可能性就會激增。

當(dāng)然,人工智能系統(tǒng)已經(jīng)掌握了這兩款游戲幾十年前的國際象棋以及2016年的圍棋,當(dāng)時稱為AlphaGo的AI系統(tǒng)擊敗了一名頂級人類玩家。 Melko表示,它們同樣適用于量子物理學(xué)中的問題。

機器的思想

無論Schawinski是否正確地聲稱他找到了做科學(xué)的“第三條道路”,或者像Hogg所說的那樣,它只是傳統(tǒng)的觀察和數(shù)據(jù)分析,很明顯AI正在改變科學(xué)發(fā)現(xiàn)的味道,而且它是肯定會加速它。那么,人工智能革命將在科學(xué)方面走多遠(yuǎn)?


有時,人們對“機器人科學(xué)家”的成就提出了很大的要求。十年前,一位名叫亞當(dāng)?shù)腁I機器人化學(xué)家研究了面包酵母的基因組,并研究出哪些基因負(fù)責(zé)制造某些氨基酸。(亞當(dāng)通過觀察某些基因缺失的酵母菌菌株,并將結(jié)果與具有這些基因的菌株的行為進(jìn)行比較來做到這一點。)《有線》雜志的標(biāo)題是“機器人通過自身進(jìn)行科學(xué)發(fā)現(xiàn)”。

要有創(chuàng)意,你必須討厭無聊。而且我不認(rèn)為電腦會覺得無聊。

最近,格拉斯哥大學(xué)的化學(xué)家Lee Cronin一直在使用機器人隨機混合化學(xué)物質(zhì),看看形成了什么樣的新化合物。通過質(zhì)譜儀、核磁共振儀和紅外光譜儀實時監(jiān)測反應(yīng),系統(tǒng)最終學(xué)會預(yù)測哪種組合最具反應(yīng)性??肆_寧表示,即使不能進(jìn)一步發(fā)現(xiàn),機器人系統(tǒng)也可以讓化學(xué)家將研究速度提高90%左右。

去年,蘇黎世聯(lián)邦理工學(xué)院的另一個科學(xué)家團隊使用神經(jīng)網(wǎng)絡(luò)從數(shù)據(jù)集中推導(dǎo)出物理定律。他們的系統(tǒng),一種類似于機器人開普勒,從地球上看到的太陽和火星在天空中的位置記錄重新發(fā)現(xiàn)了太陽系的日心模型,并通過觀察碰撞球來計算出動量守恒定律。由于物理定律通常可以不止一種方式表達(dá),研究人員想知道該系統(tǒng)是否可能提供新方法,也許是更簡單的方法,來思考已知的定律。

這些都是AI啟動科學(xué)發(fā)現(xiàn)過程的例子,盡管在每種情況下,我們都可以討論新方法的革命性。也許最具爭議的問題是,僅從數(shù)據(jù)中就能收集到多少信息——在這個數(shù)據(jù)堆積如山(而且還在不斷增加)的時代,這是一個緊迫的問題。無論何時你看到一篇論文或研究都以無模型的方式分析數(shù)據(jù)時,你可以確定研究的結(jié)果只是總結(jié),也許是變換,而不是解釋數(shù)據(jù)。

網(wǎng)站欄目:人工智能加持,已經(jīng)擋不住科學(xué)的步伐了
新聞來源:http://www.rwnh.cn/news/101211.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站設(shè)計、靜態(tài)網(wǎng)站云服務(wù)器、品牌網(wǎng)站制作企業(yè)建站、App設(shè)計

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站制作
石台县| 浪卡子县| 深泽县| 桃江县| 大丰市| 岑巩县| 新兴县| 崇仁县| 嘉善县| 长垣县| 怀来县| 阜平县| 蚌埠市| 阜新| 嘉兴市| 洪湖市| 故城县| 汝阳县| 游戏| 中山市| 胶州市| 陈巴尔虎旗| 五华县| 潞西市| 太康县| 庐江县| 富平县| 得荣县| 海城市| 中宁县| 建平县| 天水市| 台北市| 竹北市| 鄂尔多斯市| 通江县| 宜良县| 澜沧| 深圳市| 米易县| 洛宁县|