中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

Python怎么實現LSTM時間序列預測-創(chuàng)新互聯

本篇內容主要講解“Python怎么實現LSTM時間序列預測”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Python怎么實現LSTM時間序列預測”吧!

成都創(chuàng)新互聯公司是一家集網站建設,涼州企業(yè)網站建設,涼州品牌網站建設,網站定制,涼州網站建設報價,網絡營銷,網絡優(yōu)化,涼州網站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統企業(yè)提升企業(yè)形象加強企業(yè)競爭力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯網需求。同時我們時刻保持專業(yè)、時尚、前沿,時刻以成就客戶成長自我,堅持不斷學習、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實用型網站。

參考數據:

數據一共兩列,左邊是日期,右邊是乘客數量

Python怎么實現LSTM時間序列預測


對數據做可視化:

import math
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from pandas import read_csv 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
#load dataset 
dataframe = read_csv('./international-airline-passengers.csv',usecols =[1],header = None,engine = 'python',skipfooter = 3)
dataset = dataframe.values
#將整型變?yōu)閒loat
dataset = dataset.astype('float32')
plt.plot(dataset)
plt.show()

可視化結果:

Python怎么實現LSTM時間序列預測

下面開始進行建模:

完整代碼:

import math
import numpy 
import pandas as pd 
import matplotlib.pyplot as plt 
from pandas import read_csv 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
def create_dataset(dataset,look_back = 1):
	dataX,dataY = [],[]
	for i in range(len(dataset) - look_back - 1):
		a = dataset[i:i+look_back,0]
		b = dataset[i+look_back,0]
		dataX.append(a)
		dataY.append(b)
	return numpy.array(dataX),numpy.array(dataY)
numpy.random.seed(7)
dataframe = read_csv('./international-airline-passengers.csv',usecols = [1],header = None,engine = 'python')
dataset = dataframe.values
dataset = dataset.astype('float32')
scaler = MinMaxScaler(feature_range = (0,1))
dataset = scaler.fit_transform(dataset)
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train,test = dataset[0:train_size,:],dataset[train_size:len(dataset),:]
look_back = 1
trainX,trainY = create_dataset(train,look_back)
testX,testY = create_dataset(test,look_back)
#reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX,(trainX.shape[0],look_back,trainX.shape[1]))
testX = numpy.reshape(testX,(testX.shape[0],look_back,testX.shape[1]))
#create and fit the LSTM network 
model = Sequential()
model.add(LSTM(4,input_shape = (1,look_back)))
model.add(Dense(1))
model.compile(loss = 'mean_squared_error',optimizer = 'adam')
model.fit(trainX,trainY,epochs = 100,batch_size = 1,verbose = 2)
# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict
# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

運行結果:

Python怎么實現LSTM時間序列預測

Python怎么實現LSTM時間序列預測

到此,相信大家對“Python怎么實現LSTM時間序列預測”有了更深的了解,不妨來實際操作一番吧!這里是創(chuàng)新互聯網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續(xù)學習!

分享題目:Python怎么實現LSTM時間序列預測-創(chuàng)新互聯
分享URL:http://www.rwnh.cn/article8/cegeip.html

成都網站建設公司_創(chuàng)新互聯,為您提供關鍵詞優(yōu)化網站設計、App設計定制開發(fā)、響應式網站搜索引擎優(yōu)化

廣告

聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯

成都做網站
泗洪县| 江孜县| 罗田县| 老河口市| 西城区| 兰州市| 宜君县| 肇东市| 枞阳县| 昌邑市| 麟游县| 永新县| 丘北县| 正宁县| 拉萨市| 灵宝市| 金川县| 新宁县| 崇明县| 阜新| 汤阴县| 克拉玛依市| 电白县| 定结县| 呼伦贝尔市| 岳池县| 托里县| 晋宁县| 巴彦淖尔市| 昆明市| 井冈山市| 毕节市| 临高县| 涞源县| 孝昌县| 长白| 汪清县| 宽甸| 莫力| 常州市| 汶川县|