2. 什么是NoSQL?
創(chuàng)新互聯(lián)專注于大通企業(yè)網(wǎng)站建設(shè),成都響應(yīng)式網(wǎng)站建設(shè)公司,購(gòu)物商城網(wǎng)站建設(shè)。大通網(wǎng)站建設(shè)公司,為大通等地區(qū)提供建站服務(wù)。全流程按需求定制開發(fā),專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,
泛指非關(guān)系型的數(shù)據(jù)庫(kù)。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫(kù)在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫(kù)則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫(kù)的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重?cái)?shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲(chǔ)。
(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲(chǔ)不需要固定的模式,無需多余操作就可以橫向擴(kuò)展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 關(guān)系型數(shù)據(jù)庫(kù)與NoSQL的區(qū)別?
3.1 RDBMS
高度組織化結(jié)構(gòu)化數(shù)據(jù)
結(jié)構(gòu)化查詢語言(SQL)
數(shù)據(jù)和關(guān)系都存儲(chǔ)在單獨(dú)的表中。
數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言
嚴(yán)格的一致性
基礎(chǔ)事務(wù)
ACID
關(guān)系型數(shù)據(jù)庫(kù)遵循ACID規(guī)則
事務(wù)在英文中是transaction,和現(xiàn)實(shí)世界中的交易很類似,它有如下四個(gè)特性:
A (Atomicity) 原子性
原子性很容易理解,也就是說事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個(gè)操作失敗,整個(gè)事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個(gè)步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會(huì)莫名其妙少了100元。
C (Consistency) 一致性
一致性也比較容易理解,也就是說數(shù)據(jù)庫(kù)要一直處于一致的狀態(tài),事務(wù)的運(yùn)行不會(huì)改變數(shù)據(jù)庫(kù)原本的一致性約束。
I (Isolation) 獨(dú)立性
所謂的獨(dú)立性是指并發(fā)的事務(wù)之間不會(huì)互相影響,如果一個(gè)事務(wù)要訪問的數(shù)據(jù)正在被另外一個(gè)事務(wù)修改,只要另外一個(gè)事務(wù)未提交,它所訪問的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個(gè)交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個(gè)交易還未完成的情況下,如果此時(shí)B查詢自己的賬戶,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事務(wù)提交后,它所做的修改將會(huì)永久的保存在數(shù)據(jù)庫(kù)上,即使出現(xiàn)宕機(jī)也不會(huì)丟失。
3.2 NoSQL
代表著不僅僅是SQL
沒有聲明性查詢語言
沒有預(yù)定義的模式
鍵 - 值對(duì)存儲(chǔ),列存儲(chǔ),文檔存儲(chǔ),圖形數(shù)據(jù)庫(kù)
最終一致性,而非ACID屬性
非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)
CAP定理
高性能,高可用性和可伸縮性
分布式數(shù)據(jù)庫(kù)中的CAP原理(了解)
CAP定理:
Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動(dòng)都是同步的
Availability(可用性), 好的響應(yīng)性能
Partition tolerance(分區(qū)容錯(cuò)性) 可靠性
P: 系統(tǒng)中任意信息的丟失或失敗不會(huì)影響系統(tǒng)的繼續(xù)運(yùn)作。
定理:任何分布式系統(tǒng)只可同時(shí)滿足二點(diǎn),沒法三者兼顧。
CAP理論的核心是:一個(gè)分布式系統(tǒng)不可能同時(shí)很好的滿足一致性,可用性和分區(qū)容錯(cuò)性這三個(gè)需求,
因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫(kù)分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:
CA - 單點(diǎn)集群,滿足一致性,可用性的系統(tǒng),通常在可擴(kuò)展性上不太強(qiáng)大。
CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。
AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐?duì)一致性要求低一些。
CAP理論就是說在分布式存儲(chǔ)系統(tǒng)中,最多只能實(shí)現(xiàn)上面的兩點(diǎn)。
而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會(huì)出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實(shí)現(xiàn)的。
所以我們只能在一致性和可用性之間進(jìn)行權(quán)衡,沒有NoSQL系統(tǒng)能同時(shí)保證這三點(diǎn)。
說明:C:強(qiáng)一致性 A:高可用性 P:分布式容忍性
舉例:
CA:傳統(tǒng)Oracle數(shù)據(jù)庫(kù)
AP:大多數(shù)網(wǎng)站架構(gòu)的選擇
CP:Redis、Mongodb
注意:分布式架構(gòu)的時(shí)候必須做出取舍。
一致性和可用性之間取一個(gè)平衡。多余大多數(shù)web應(yīng)用,其實(shí)并不需要強(qiáng)一致性。
因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫(kù)產(chǎn)品的方向。
4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用
當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。
代表項(xiàng)目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型機(jī),很貴的,好像好幾萬一臺(tái);O 是指 Oracle 數(shù)據(jù)庫(kù),也很貴的,好幾萬呢;M 是指 EMC 的存儲(chǔ)設(shè)備,也很貴的。
難點(diǎn):
數(shù)據(jù)類型多樣性。
數(shù)據(jù)源多樣性和變化重構(gòu)。
數(shù)據(jù)源改造而服務(wù)平臺(tái)不需要大面積重構(gòu)。
NoSQL 數(shù)據(jù)庫(kù)因其功能性、易于開發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們?cè)絹碓蕉嗟赜糜诖髷?shù)據(jù)和實(shí)時(shí) Web 應(yīng)用程序,在本文中,我們通過示例討論 NoSQL、何時(shí)使用 NoSQL 與 SQL 及其用例。
NoSQL是一種下一代數(shù)據(jù)庫(kù)管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫(kù)具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。
“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來就已經(jīng)存在類似的數(shù)據(jù)庫(kù)。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。
在處理大量數(shù)據(jù)時(shí),任何關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng) (RDBMS) 的響應(yīng)時(shí)間都會(huì)變慢。為了解決這個(gè)問題,我們可以通過升級(jí)現(xiàn)有硬件來“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。
NoSQL 對(duì)于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對(duì)象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。
一些流行的 NoSQL 數(shù)據(jù)庫(kù)包括:
隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對(duì)象來更好地捕獲這些信息。
傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語言)語法來存儲(chǔ)和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫(kù)包含廣泛的功能,可以存儲(chǔ)和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。
有時(shí),NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語言或與 SQL 數(shù)據(jù)庫(kù)并列。SQL 和 NoSQL DBMS 之間的一個(gè)區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫(kù)使用 JOIN 子句來組合來自兩個(gè)或多個(gè)表的行,因?yàn)?NoSQL 數(shù)據(jù)庫(kù)本質(zhì)上不是表格的,所以這個(gè)功能并不總是可行或相關(guān)的。
但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫(kù)傾向于以不同的方式解決類似的問題。
一般來說,在以下情況下,NoSQL 比 SQL 更可?。?/p>
許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫(kù),從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫(kù)的一些企業(yè)用例。
內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫(kù)可以通過其靈活和開放的數(shù)據(jù)模型為存儲(chǔ)多媒體內(nèi)容提供更好的選擇。
例如,福布斯在短短幾個(gè)月內(nèi)就構(gòu)建了一個(gè)基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。
大數(shù)據(jù)是指太大而無法通過傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時(shí)存儲(chǔ)和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時(shí)使用流處理來攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫(kù)的功能。
Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒有性能問題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。
物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺(tái)設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫(kù)為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。
Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動(dòng)態(tài)、非統(tǒng)一的數(shù)據(jù)集。
擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動(dòng)設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。
例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫(kù)每分鐘處理數(shù)百萬個(gè)請(qǐng)求,同時(shí)還處理用戶數(shù)據(jù)并提供天氣更新。
常用數(shù)據(jù)庫(kù)有:
1、關(guān)系型數(shù)據(jù)庫(kù)
關(guān)系型數(shù)據(jù)庫(kù)是由IBM的E.F. Codd于1970年發(fā)明的,它是一個(gè)表格數(shù)據(jù)庫(kù),其中定義了數(shù)據(jù),因此可以以多種不同的方式對(duì)其進(jìn)行重組和訪問。關(guān)系數(shù)據(jù)庫(kù)由一組表組成,其中的數(shù)據(jù)屬于預(yù)定義的類別。每個(gè)表在一個(gè)列中至少有一個(gè)數(shù)據(jù)類別,并且每一行對(duì)于列中定義的類別都有一個(gè)特定的數(shù)據(jù)實(shí)例。
2、分布式數(shù)據(jù)庫(kù)
分布式數(shù)據(jù)庫(kù)是一種數(shù)據(jù)庫(kù),數(shù)據(jù)庫(kù)存儲(chǔ)在多個(gè)物理位置,處理在網(wǎng)絡(luò)中的不同點(diǎn)之間分散或復(fù)制。分布式數(shù)據(jù)庫(kù)可以是同構(gòu)的,也可以是異構(gòu)的。同構(gòu)分布式數(shù)據(jù)庫(kù)系統(tǒng)中的所有物理位置都具有相同的底層硬件,并運(yùn)行相同的操作系統(tǒng)和數(shù)據(jù)庫(kù)應(yīng)用程序。異構(gòu)分布式數(shù)據(jù)庫(kù)中的硬件、操作系統(tǒng)或數(shù)據(jù)庫(kù)應(yīng)用程序在每個(gè)位置上可能是不同的。
3、云數(shù)據(jù)庫(kù)
云數(shù)據(jù)庫(kù)是針對(duì)虛擬化環(huán)境優(yōu)化或構(gòu)建的數(shù)據(jù)庫(kù)。云數(shù)據(jù)庫(kù)提供了一些好處,比如可以按每次使用支付存儲(chǔ)容量和帶寬的費(fèi)用,還可以根據(jù)需要提供可伸縮性和高可用性。云數(shù)據(jù)庫(kù)還為企業(yè)提供了在軟件即服務(wù)部署中支持業(yè)務(wù)應(yīng)用程序的機(jī)會(huì)。
4、NoSQL數(shù)據(jù)庫(kù)
NoSQL數(shù)據(jù)庫(kù)對(duì)于大型分布式數(shù)據(jù)集非常有用。NoSQL數(shù)據(jù)庫(kù)對(duì)于關(guān)系數(shù)據(jù)庫(kù)無法解決的大數(shù)據(jù)性能問題非常有效。當(dāng)組織必須分析大量非結(jié)構(gòu)化數(shù)據(jù)或存儲(chǔ)在云中多個(gè)虛擬服務(wù)器上的數(shù)據(jù)時(shí),它們是最有效的。
5、面向?qū)ο蟮臄?shù)據(jù)庫(kù)
使用面向?qū)ο缶幊陶Z言創(chuàng)建的項(xiàng)通常存儲(chǔ)在關(guān)系數(shù)據(jù)庫(kù)中,但是面向?qū)ο髷?shù)據(jù)庫(kù)非常適合于這些項(xiàng)。面向?qū)ο蟮臄?shù)據(jù)庫(kù)是圍繞對(duì)象(而不是操作)和數(shù)據(jù)(而不是邏輯)組織的。例如,關(guān)系數(shù)據(jù)庫(kù)中的多媒體記錄可以是可定義的數(shù)據(jù)對(duì)象,而不是字母數(shù)字值。
6、圖形數(shù)據(jù)庫(kù)
面向圖形的數(shù)據(jù)庫(kù)是一種NoSQL數(shù)據(jù)庫(kù),它使用圖形理論存儲(chǔ)、映射和查詢關(guān)系。圖數(shù)據(jù)庫(kù)基本上是節(jié)點(diǎn)和邊的集合,其中每個(gè)節(jié)點(diǎn)表示一個(gè)實(shí)體,每個(gè)邊表示節(jié)點(diǎn)之間的連接。
答案:A
1.文檔型數(shù)據(jù)庫(kù)
作為最受歡迎的NoSQL產(chǎn)品,文檔型數(shù)據(jù)庫(kù)MongoDB當(dāng)仁不讓地占據(jù)了第一的位置,同時(shí)它也是所有NoSQL數(shù)據(jù)庫(kù)中排名最靠前的產(chǎn)品(總排行榜第七名)。Apache基金會(huì)的CouchDB排在第二,基于.Net的數(shù)據(jù)庫(kù)RavenDB排在第三,Couchbase排在第四。
2.鍵值(Key-value)數(shù)據(jù)庫(kù)
鍵值(Key-value)數(shù)據(jù)庫(kù)是NoSQL領(lǐng)域中應(yīng)用范圍最廣的,也是涉及產(chǎn)品最多的一種模型。從最簡(jiǎn)單的BerkeleyDB到功能豐富的分布式數(shù)據(jù)庫(kù)Riak再到Amazon托管的DynamoDB不一而足。
在鍵值數(shù)據(jù)庫(kù)流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的內(nèi)存數(shù)據(jù)庫(kù),總體排名第十一。排在第二位的是Memcached,它在緩存系統(tǒng)中應(yīng)用十分廣泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL數(shù)據(jù)庫(kù)。值得注意的是,Oracle NoSQL數(shù)據(jù)庫(kù)上榜不久,得分已經(jīng)翻番,上升勢(shì)頭非常迅猛。
3. 列式存儲(chǔ)
列式存儲(chǔ)被視為NoSQL數(shù)據(jù)庫(kù)中非常重要的一種模式,其中Cassandra流行度最高,它已經(jīng)由Facebook轉(zhuǎn)交給到Apache進(jìn)行管理,同時(shí)Cassandra在全體數(shù)據(jù)庫(kù)排名中排在第十位,緊隨MongoDB成為第二受歡迎的NoSQL數(shù)據(jù)庫(kù)?;贖adoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公開。
NoSQL(NoSQL
=
Not
Only
SQL
),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫(kù)革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢(shì)越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)據(jù)存儲(chǔ),相對(duì)于鋪天蓋地的關(guān)系型數(shù)據(jù)庫(kù)運(yùn)用,這一概念無疑是一種全新的思維的注入。
隨著大數(shù)據(jù)的不斷發(fā)展,非關(guān)系型的數(shù)據(jù)庫(kù)現(xiàn)在成了一個(gè)極其熱門的新領(lǐng)域,非關(guān)系數(shù)據(jù)庫(kù)產(chǎn)品的發(fā)展非常迅速。現(xiàn)今的計(jì)算機(jī)體系結(jié)構(gòu)在數(shù)據(jù)存儲(chǔ)方面要有龐大的水平擴(kuò)展性,而NoSQL也正是致力于改變這一現(xiàn)狀。目前Google的
BigTable和Amazon
的Dynamo使用的就是NoSQL型數(shù)據(jù)庫(kù),本文介紹了10種出色的NoSQL數(shù)據(jù)庫(kù)。
雖然NoSQL流行語火起來才短短一年的時(shí)間,但是不可否認(rèn),現(xiàn)在已經(jīng)開始了第二代運(yùn)動(dòng)。盡管早期的堆棧代碼只能算是一種實(shí)驗(yàn),然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個(gè)嚴(yán)酷的事實(shí):技術(shù)越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲(chǔ)不得不進(jìn)行重寫,也有少數(shù)人認(rèn)為這就是所謂的2.0版本。這里列出一些比較知名的NoSQL工具,可以為大數(shù)據(jù)建立快速、可擴(kuò)展的存儲(chǔ)庫(kù)。
給一個(gè)地址吧
大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲(chǔ)、數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、機(jī)器學(xué)習(xí)、并行計(jì)算、可視化等。
1、數(shù)據(jù)采集與預(yù)處理:FlumeNG實(shí)時(shí)日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個(gè)分布式的,開放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。
2、數(shù)據(jù)存儲(chǔ):Hadoop作為一個(gè)開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計(jì),HDFS作為其核心的存儲(chǔ)引擎,已被廣泛用于數(shù)據(jù)存儲(chǔ)。HBase,是一個(gè)分布式的、面向列的開源數(shù)據(jù)庫(kù),可以認(rèn)為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)。
3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計(jì)算。
4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫(kù)表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負(fù)載。
5、數(shù)據(jù)可視化:對(duì)接一些BI平臺(tái),將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。
當(dāng)前標(biāo)題:nosql數(shù)據(jù)庫(kù)大數(shù)據(jù),nosql數(shù)據(jù)庫(kù)和mysql
分享鏈接:http://www.rwnh.cn/article42/dssdjhc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App設(shè)計(jì)、網(wǎng)站維護(hù)、企業(yè)網(wǎng)站制作、網(wǎng)站內(nèi)鏈、ChatGPT、網(wǎng)站制作
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)