中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

怎么在python中利用opencv實現(xiàn)一個車道線檢測功能-創(chuàng)新互聯(lián)

這篇文章將為大家詳細講解有關(guān)怎么在python中利用opencv實現(xiàn)一個車道線檢測功能,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關(guān)知識有一定的了解。

讓客戶滿意是我們工作的目標,不斷超越客戶的期望值來自于我們對這個行業(yè)的熱愛。我們立志把好的技術(shù)通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領(lǐng)域值得信任、有價值的長期合作伙伴,公司提供的服務(wù)項目有:域名與空間、虛擬空間、營銷軟件、網(wǎng)站建設(shè)、淇濱網(wǎng)站維護、網(wǎng)站推廣。

實現(xiàn)思路:


1、canny邊緣檢測獲取圖中的邊緣信息;
2、霍夫變換尋找圖中直線;
3、繪制梯形感興趣區(qū)域獲得車前范圍;
4、得到并繪制車道線;


代碼實現(xiàn):

import cv2
import numpy as np


def canny():
 gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
 #高斯濾波
 blur = cv2.GaussianBlur(gray, (5, 5), 0)
 #邊緣檢測
 canny_img = cv2.Canny(blur, 50, 150)
 return canny_img


def region_of_interest(r_image):
 h = r_image.shape[0]
 w = r_image.shape[1]
 # 這個區(qū)域不穩(wěn)定,需要根據(jù)圖片更換
 poly = np.array([
 [(100, h), (500, h), (290, 180), (250, 180)]
 ])
 mask = np.zeros_like(r_image)
 # 繪制掩膜圖像
 cv2.fillPoly(mask, poly, 255)
 # 獲得ROI區(qū)域
 masked_image = cv2.bitwise_and(r_image, mask)
 return masked_image


if __name__ == '__main__':
 image = cv2.imread('test.jpg')
 lane_image = np.copy(image)
 canny = canny()
 cropped_image = region_of_interest(canny)
 cv2.imshow("result", cropped_image)
 cv2.waitKey(0)

霍夫變換加線性擬合改良:

代碼實現(xiàn):


主要增加了根據(jù)斜率作線性擬合過濾無用點后連線的操作;

import cv2
import numpy as np


def canny():
 gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
 blur = cv2.GaussianBlur(gray, (5, 5), 0)

 canny_img = cv2.Canny(blur, 50, 150)
 return canny_img


def region_of_interest(r_image):
 h = r_image.shape[0]
 w = r_image.shape[1]

 poly = np.array([
 [(100, h), (500, h), (280, 180), (250, 180)]
 ])
 mask = np.zeros_like(r_image)
 cv2.fillPoly(mask, poly, 255)
 masked_image = cv2.bitwise_and(r_image, mask)
 return masked_image


def get_lines(img_lines):
 if img_lines is not None:
 for line in lines:
 for x1, y1, x2, y2 in line:
 # 分左右車道
 k = (y2 - y1) / (x2 - x1)
 if k < 0:
  lefts.append(line)
 else:
  rights.append(line)


def choose_lines(after_lines, slo_th): # 過濾斜率差別較大的點
 slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 獲得斜率數(shù)組
 while len(after_lines) > 0:
 mean = np.mean(slope) # 計算平均斜率
 diff = [abs(s - mean) for s in slope] # 每條線斜率與平均斜率的差距
 idx = np.argmax(diff) # 找到較大斜率的索引
 if diff[idx] > slo_th: # 大于預(yù)設(shè)的閾值選取
 slope.pop(idx)
 after_lines.pop(idx)
 else:
 break

 return after_lines


def clac_edgepoints(points, y_min, y_max):
 x = [p[0] for p in points]
 y = [p[1] for p in points]

 k = np.polyfit(y, x, 1) # 曲線擬合的函數(shù),找到xy的擬合關(guān)系斜率
 func = np.poly1d(k) # 斜率代入可以得到一個y=kx的函數(shù)

 x_min = int(func(y_min)) # y_min = 325其實是近似找了一個
 x_max = int(func(y_max))

 return [(x_min, y_min), (x_max, y_max)]


if __name__ == '__main__':
 image = cv2.imread('F:\\A_javaPro\\test.jpg')
 lane_image = np.copy(image)
 canny_img = canny()
 cropped_image = region_of_interest(canny_img)
 lefts = []
 rights = []
 lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20)
 get_lines(lines) # 分別得到左右車道線的圖片

 good_leftlines = choose_lines(lefts, 0.1) # 處理后的點
 good_rightlines = choose_lines(rights, 0.1)

 leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left]
 leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left]

 rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right]
 rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right]

 lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要畫左右車道線的端點
 righttop = clac_edgepoints(rightpoints, 180, image.shape[0])

 src = np.zeros_like(image)

 cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7)
 cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7)

 cv2.imshow('line Image', src)
 src_2 = cv2.addWeighted(image, 0.8, src, 1, 0)
 cv2.imshow('Finally Image', src_2)

 cv2.waitKey(0)

關(guān)于怎么在python中利用opencv實現(xiàn)一個車道線檢測功能就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學(xué)到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

當前文章:怎么在python中利用opencv實現(xiàn)一個車道線檢測功能-創(chuàng)新互聯(lián)
分享路徑:http://www.rwnh.cn/article40/cseheo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站建設(shè)域名注冊、定制開發(fā)、做網(wǎng)站、微信公眾號云服務(wù)器

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

營銷型網(wǎng)站建設(shè)
乌拉特中旗| 彩票| 石渠县| 清远市| 盖州市| 资兴市| 仪征市| 莲花县| 阜平县| 行唐县| 邳州市| 永清县| 崇礼县| 洛南县| 连城县| 临夏市| 巴中市| 延吉市| 桂东县| 镇江市| 武威市| 建湖县| 开封县| 屯昌县| 宁南县| 白河县| 宁武县| 呼和浩特市| 利辛县| 孟津县| 姚安县| 古田县| 巧家县| 娄烦县| 新营市| 金川县| 吴桥县| 西盟| 孟村| 民乐县| 赤水市|