内射老阿姨1区2区3区4区_久久精品人人做人人爽电影蜜月_久久国产精品亚洲77777_99精品又大又爽又粗少妇毛片

【線性回歸】-創(chuàng)新互聯(lián)

單因子線性回歸 獲取數(shù)據(jù)

import pandas as pd
data = pd.read_csv(‘generated_data.csv’)
x = data.loc[:,‘x’]
y = data.loc[:,‘y’]
print(x,y)
from matplotlib import pyplot as plt
plt.scatter(x,y)
plt.show()

創(chuàng)新互聯(lián)建站提供高防主機(jī)、云服務(wù)器、香港服務(wù)器、聯(lián)通機(jī)房服務(wù)器托管等建立模型

from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()
import numpy as np
x = np.array(x)
x = x.reshape(-1,1)
y = np.array(y)
y = y.reshape(-1,1)
print(type(x),x.shape,type(y),y.shape)
lr_model.fit(x,y)
y_predict = lr_model.predict(x)
print(y_predict)
y_3 = lr_model.predict([[3.5]])
print(y_3)
print(y)
a = lr_model.coef_
b = lr_model.intercept_
print(a,b)

分析MSE和R2

from sklearn.metrics import mean_squared_error,r2_score
MSE = mean_squared_error(y,y_predict)
R2 = r2_score(y,y_predict)
print(MSE,R2)
plt.plot(y,y_predict)
plt.show()

多因子線性回歸 獲取數(shù)據(jù)

import pandas as pd
import numpy as np
data = pd.read_csv(‘usa_housing_price.csv’)
data.head()

from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10,10))

fig1 =plt.subplot(231)
plt.scatter(data.loc[:,‘Avg. Area Income’],data.loc[:,‘Price’])
plt.title(‘Price VS Income’)

fig2 =plt.subplot(232)
plt.scatter(data.loc[:,‘Avg. Area House Age’],data.loc[:,‘Price’])
plt.title(‘Price VS House Age’)

fig3 =plt.subplot(233)
plt.scatter(data.loc[:,‘Avg. Area Number of Rooms’],data.loc[:,‘Price’])
plt.title(‘Price VS Number of Rooms’)

fig4 =plt.subplot(234)
plt.scatter(data.loc[:,‘Area Population’],data.loc[:,‘Price’])
plt.title(‘Price VS Area Population’)

fig5 =plt.subplot(235)
plt.scatter(data.loc[:,‘size’],data.loc[:,‘Price’])
plt.title(‘Price VS size’)
plt.show()

X = data.loc[:,‘size’]
y = data.loc[:,‘Price’]
y.head()
X = np.array(X).reshape(-1,1)
print(X.shape)

建立模型

from sklearn.linear_model import LinearRegression
LR1 = LinearRegression()
#train the model
LR1.fit(X,y)

y_predict_1 = LR1.predict(X)
print(y_predict_1)

from sklearn.metrics import mean_squared_error,r2_score
mean_squared_error_1 = mean_squared_error(y,y_predict_1)
r2_score_1 = r2_score(y,y_predict_1)
print(mean_squared_error_1,r2_score_1)

fig6 = plt.figure(figsize=(8,5))
plt.scatter(X,y)
plt.plot(X,y_predict_1,‘r’)
plt.show()

X_multi = data.drop([‘Price’],axis=1)
X_multi

#set up 2nd linear model
LR_multi = LinearRegression()
#train the model
LR_multi.fit(X_multi,y)

#make prediction
y_predict_multi = LR_multi.predict(X_multi)
print(y_predict_multi)

mean_squared_error_multi = mean_squared_error(y,y_predict_multi)
r2_score_multi = r2_score(y,y_predict_multi)
print(mean_squared_error_multi,r2_score_multi)

print(mean_squared_error_1)

fig7 = plt.figure(figsize=(8,5))
plt.scatter(y,y_predict_multi)
plt.show()

fig8 = plt.figure(figsize=(8,5))
plt.scatter(y,y_predict_1)
plt.show()

X_test = [65000,5,5,30000,200]
X_test = np.array(X_test).reshape(1,-1)
print(X_test)

y_test_predict = LR_multi.predict(X_test)
print(y_test_predict)

你是否還在尋找穩(wěn)定的海外服務(wù)器提供商?創(chuàng)新互聯(lián)www.cdcxhl.cn海外機(jī)房具備T級(jí)流量清洗系統(tǒng)配攻擊溯源,準(zhǔn)確流量調(diào)度確保服務(wù)器高可用性,企業(yè)級(jí)服務(wù)器適合批量采購,新人活動(dòng)首月15元起,快前往官網(wǎng)查看詳情吧

文章名稱:【線性回歸】-創(chuàng)新互聯(lián)
標(biāo)題網(wǎng)址:http://www.rwnh.cn/article4/geeoe.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供企業(yè)網(wǎng)站制作、ChatGPT、外貿(mào)網(wǎng)站建設(shè)微信小程序、標(biāo)簽優(yōu)化、面包屑導(dǎo)航

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

成都網(wǎng)頁設(shè)計(jì)公司
永安市| 三门县| 舟山市| 内丘县| 毕节市| 修武县| 安仁县| 灯塔市| 辰溪县| 青田县| 平度市| 哈巴河县| 吴江市| 嵊州市| 阜阳市| 泗水县| 福安市| 兰考县| 玛多县| 镇沅| 大同市| 阿鲁科尔沁旗| 弥勒县| 宁强县| 常熟市| 罗江县| 江达县| 七台河市| 博爱县| 正阳县| 临泉县| 天镇县| 谷城县| 措勤县| 太保市| 来安县| 商河县| 平邑县| 明溪县| 吐鲁番市| 鄂托克前旗|