這篇文章主要介紹DataFrame基礎(chǔ)運算以及空值填充的案例分析,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!
為莆田等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計制作服務(wù),及莆田網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為成都網(wǎng)站制作、做網(wǎng)站、莆田網(wǎng)站設(shè)計,以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!我們可以計算兩個DataFrame的加和,pandas會自動將這兩個DataFrame進行數(shù)據(jù)對齊,如果對不上的數(shù)據(jù)會被置為Nan(not a number)。
首先我們來創(chuàng)建兩個DataFrame:
import numpy as npimport pandas as pddf1 = pd.DataFrame(np.arange(9).reshape((3, 3)), columns=list('abc'), index=['1', '2', '3'])df2 = pd.DataFrame(np.arange(12).reshape((4, 3)), columns=list('abd'), index=['2', '3', '4', '5'])復(fù)制代碼
得到的結(jié)果和我們設(shè)想的一致,其實只是通過numpy數(shù)組創(chuàng)建DataFrame,然后指定index和columns而已,這應(yīng)該算是很基礎(chǔ)的用法了。
然后我們將兩個DataFrame相加,會得到:
我們發(fā)現(xiàn)pandas將兩個DataFrame加起來合并了之后,凡是沒有在兩個DataFrame都出現(xiàn)的位置就會被置為Nan。這其實是很有道理的,實際上不只是加法,我們可以計算兩個DataFrame的加減乘除的四則運算都是可以的。如果是計算兩個DataFrame相除的話,那么除了對應(yīng)不上的數(shù)據(jù)會被置為Nan之外,除零這個行為也會導(dǎo)致異常值的發(fā)生(可能不一定是Nan,而是inf)。
如果我們要對兩個DataFrame進行運算,那么我們當(dāng)然不會希望出現(xiàn)空值。這個時候就需要對空值進行填充了,我們直接使用運算符進行運算是沒辦法傳遞參數(shù)進行填充的,這個時候我們需要使用DataFrame當(dāng)中為我們提供的算術(shù)方法。
DataFrame當(dāng)中常用的運算符有這么幾種:
add、sub、p這些我們都很好理解,那么這里的radd、rsub方法又是什么意思呢,為什么前面要加上一個r呢?
看起來費解,但是說白了一文不值,radd是用來翻轉(zhuǎn)參數(shù)的。舉個例子,比如說我們希望得到DataFrame當(dāng)中所有元素的倒數(shù),我們可以寫成1 / df。由于1本身并不是一個DataFrame,所以我們不能用1來呼叫DataFrame當(dāng)中的方法,也就不能傳遞參數(shù),為了解決這種情況,我們可以把1 / df寫成df.rp(1),這樣我們就可以在其中傳遞參數(shù)了。
由于在算除法的過程當(dāng)中發(fā)生了除零,所以我們得到了一個inf,它表示無窮大。
我們可以在add、p這些方法當(dāng)中傳入一個fill_value的參數(shù),這個參數(shù)可以在計算之前對于一邊出現(xiàn)缺失值的情況進行填充。也就是說對于對于只在一個DataFrame中缺失的位置會被替換成我們指定的值,如果在兩個DataFrame都缺失,那么依然還會是Nan。
我們對比下結(jié)果就能發(fā)現(xiàn)了,相加之后的(1, d), (4, c)以及(5, c)的位置都是Nan,因為df1和df2兩個DataFrame當(dāng)中這些位置都是空值,所以沒有被填充。
fill_value這個參數(shù)在很多api當(dāng)中都有出現(xiàn),比如reindex等,用法都是一樣的,我們在查閱api文檔的時候可以注意一下。
那么對于這種填充了之后還出現(xiàn)的空值我們應(yīng)該怎么辦呢?難道只能手動找到這些位置進行填充嗎?當(dāng)然是不現(xiàn)實的,pandas當(dāng)中還為我們提供了專門解決空值的api。
在填充空值之前,我們首先要做的是發(fā)現(xiàn)空值。針對這個問題,我們有isna這個api,它會返回一個bool型的DataFrame,DataFrame當(dāng)中的每一個位置表示了原DataFrame對應(yīng)的位置是否是空值。
當(dāng)然只是發(fā)現(xiàn)是否是空值肯定是不夠的,我們有時候會希望不要空值的出現(xiàn),這個時候我們可以選擇drop掉空值。針對這種情況,我們可以使用DataFrame當(dāng)中的dropna方法。
我們發(fā)現(xiàn)使用了dropna之后,出現(xiàn)了空值的行都被拋棄了。只保留了沒有空值的行,有時候我們希望拋棄是的列而不是行,這個時候我們可以通過傳入axis參數(shù)進行控制。
這樣我們得到的就是不含空值的列,除了可以控制行列之外,我們還可以控制執(zhí)行drop的嚴(yán)格程度。我們可以通過how這個參數(shù)來判斷,how支持兩種值傳入,一種是'all',一種是'any'。all表示只有在某一行或者是某一列全為空值的時候才會拋棄,any與之對應(yīng)就是只要出現(xiàn)了空值就會拋棄。默認不填的話認為是any,一般情況下我們也用不到這個參數(shù),大概有個印象就可以了。
pandas除了可以drop含有空值的數(shù)據(jù)之外,當(dāng)然也可以用來填充空值,事實上這也是最常用的方法。
我們可以很簡單地傳入一個具體的值用來填充:
fillna會返回一個新的DataFrame,其中所有的Nan值會被替換成我們指定的值。如果我們不希望它返回一個新的DataFrame,而是直接在原數(shù)據(jù)進行修改的話,我們可以使用inplace參數(shù),表明這是一個inplace的操作,那么pandas將會在原DataFrame上進行修改。
df3.fillna(3, inplace=True)復(fù)制代碼
除了填充具體的值以外,我們也可以和一些計算結(jié)合起來算出來應(yīng)該填充的值。比如說我們可以計算出某一列的均值、大值、最小值等各種計算來填充。fillna這個函數(shù)不僅可以使用在DataFrame上,也可以使用在Series上,所以我們可以針對DataFrame中的某一列或者是某些列進行填充:
除了可以計算出均值、大最小值等各種值來進行填充之外,還可以指定使用缺失值的前一行或者是后一行的值來填充。實現(xiàn)這個功能需要用到method這個參數(shù),它有兩個接收值,ffill表示用前一行的值來進行填充,bfill表示使用后一行的值填充。
我們可以看到,當(dāng)我們使用ffill填充的時候,對于第一行的數(shù)據(jù)來說由于它沒有前一行了,所以它的Nan會被保留。同樣當(dāng)我們使用bfill的時候,最后一行也無法填充。
以上是DataFrame基礎(chǔ)運算以及空值填充的案例分析的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對大家有幫助,更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)-成都網(wǎng)站建設(shè)公司行業(yè)資訊頻道!
當(dāng)前題目:DataFrame基礎(chǔ)運算以及空值填充的案例分析-創(chuàng)新互聯(lián)
分享地址:http://www.rwnh.cn/article36/copssg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站建設(shè)、網(wǎng)站設(shè)計、網(wǎng)頁設(shè)計公司、微信小程序、網(wǎng)站導(dǎo)航、ChatGPT
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)