中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

python函數(shù)回歸 python中回歸分析的算法

python線性回歸有哪些方法

線性回歸:

公司主營業(yè)務(wù):成都網(wǎng)站設(shè)計(jì)、成都網(wǎng)站建設(shè)、移動網(wǎng)站開發(fā)等業(yè)務(wù)。幫助企業(yè)客戶真正實(shí)現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。成都創(chuàng)新互聯(lián)是一支青春激揚(yáng)、勤奮敬業(yè)、活力青春激揚(yáng)、勤奮敬業(yè)、活力澎湃、和諧高效的團(tuán)隊(duì)。公司秉承以“開放、自由、嚴(yán)謹(jǐn)、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領(lǐng)域給我們帶來的挑戰(zhàn),讓我們激情的團(tuán)隊(duì)有機(jī)會用頭腦與智慧不斷的給客戶帶來驚喜。成都創(chuàng)新互聯(lián)推出長泰免費(fèi)做網(wǎng)站回饋大家。

設(shè)x,y分別為一組數(shù)據(jù),代碼如下

import matplotlib.pyplot as plt

import numpy as np

ro=np.polyfit(x,y,deg=1) #deg為擬合的多項(xiàng)式的次數(shù)(線性回歸就選1)

ry=np.polyval(ro,x) #忘記x和ro哪個在前哪個在后了。。。

print ro #輸出的第一個數(shù)是斜率k,第二個數(shù)是縱截距b

plt.scatter(x,y)

plt.plot(x,ry)

python邏輯回歸怎么求正系數(shù)

Python 邏輯回歸求正系數(shù)的方法可以分為兩種:

1. 使用線性模型的求解方法:可以使用sklearn中的LogisticRegression類來求解正系數(shù),調(diào)用其中的fit()方法就可以求解出正系數(shù)。

2. 使用梯度下降法:可以自己實(shí)現(xiàn)梯度下降法,通過不斷迭代更新正系數(shù),最終獲得最優(yōu)的正系數(shù)。

求python支持向量機(jī)多元回歸預(yù)測代碼

這是一段用 Python 來實(shí)現(xiàn) SVM 多元回歸預(yù)測的代碼示例:

# 導(dǎo)入相關(guān)庫

from sklearn import datasets

from sklearn.svm import SVR

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

# 加載數(shù)據(jù)集

X, y = datasets.load_boston(return_X_y=True)

# 將數(shù)據(jù)集拆分為訓(xùn)練集和測試集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# 創(chuàng)建SVM多元回歸模型

reg = SVR(C=1.0, epsilon=0.2)

# 訓(xùn)練模型

reg.fit(X_train, y_train)

# 預(yù)測結(jié)果

y_pred = reg.predict(X_test)

# 計(jì)算均方誤差

mse = mean_squared_error(y_test, y_pred)

print("Mean Squared Error:", mse)

在這段代碼中,首先導(dǎo)入了相關(guān)的庫,包括 SVR 函數(shù)、train_test_split 函數(shù)和 mean_squared_error 函數(shù)。然后,使用 load_boston 函數(shù)加載數(shù)據(jù)集,并將數(shù)據(jù)集分為訓(xùn)練集和測試集。接著,使用 SVR 函數(shù)創(chuàng)建了一個 SVM 多元回歸模型,并使用 fit 函數(shù)對模型進(jìn)行訓(xùn)練。最后,使用 predict 函數(shù)進(jìn)行預(yù)測,并使用 mean_squared_error 函數(shù)計(jì)算均方誤差。

需要注意的是,這僅僅是一個示例代碼,在實(shí)際應(yīng)用中,可能需要根據(jù)項(xiàng)目的需求進(jìn)行更改,例如使用不同的超參數(shù)

網(wǎng)站欄目:python函數(shù)回歸 python中回歸分析的算法
URL地址:http://www.rwnh.cn/article30/doggopo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供移動網(wǎng)站建設(shè)、App開發(fā)、商城網(wǎng)站、網(wǎng)頁設(shè)計(jì)公司、品牌網(wǎng)站制作、小程序開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

小程序開發(fā)
扎鲁特旗| 驻马店市| 从江县| 吉木萨尔县| 江城| 大英县| 威远县| 读书| 诸城市| 深水埗区| 丰原市| 烟台市| 临武县| 色达县| 龙游县| 安福县| 泗阳县| 浦东新区| 米脂县| 绥滨县| 石楼县| 宁武县| 哈密市| 甘南县| 塔城市| 社会| 利辛县| 瑞昌市| 鹤山市| 喀喇| 永兴县| 凤城市| 惠州市| 吕梁市| 东明县| 临海市| 苏尼特右旗| 竹溪县| 和平区| 尖扎县| 洛宁县|