本篇文章給大家分享的是有關Python list與NumPy array的區(qū)別是什么,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
創(chuàng)新互聯(lián)擁有一支富有激情的企業(yè)網站制作團隊,在互聯(lián)網網站建設行業(yè)深耕十余年,專業(yè)且經驗豐富。十余年網站優(yōu)化營銷經驗,我們已為成百上千家中小企業(yè)提供了成都網站制作、成都網站設計、外貿營銷網站建設解決方案,定制網站建設,設計滿意,售后服務無憂。所有客戶皆提供一年免費網站維護!1. 數(shù)據類型 type()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Yongqiang Cheng from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..') current_directory = os.path.dirname(os.path.abspath(__file__)) import numpy as np # import tensorflow as tf import cv2 import time print(16 * "++--") print("current_directory:", current_directory) PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR. print("Python list") print("PIXEL_MEAN:", PIXEL_MEAN) print("type(PIXEL_MEAN):", type(PIXEL_MEAN)) print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n") PIXEL_MEAN_array = np.array(PIXEL_MEAN) print("NumPy array") print("PIXEL_MEAN_array:", PIXEL_MEAN_array) print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array)) print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0])) print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype)
/usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0 ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++-- current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow Python list PIXEL_MEAN: [123.68, 116.779, 103.939] type(PIXEL_MEAN): <type 'list'> type(PIXEL_MEAN[0]): <type 'float'> NumPy array PIXEL_MEAN_array: [123.68 116.779 103.939] type(PIXEL_MEAN_array): <type 'numpy.ndarray'> type(PIXEL_MEAN_array[0]): <type 'numpy.float64'> PIXEL_MEAN_array.dtype: float64 Process finished with exit code 0
2. 數(shù)據融合 (data fusion)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Yongqiang Cheng from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..') current_directory = os.path.dirname(os.path.abspath(__file__)) import numpy as np # import tensorflow as tf import cv2 import time print(16 * "++--") print("current_directory:", current_directory) PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR. print("Python list") print("PIXEL_MEAN:", PIXEL_MEAN) print("type(PIXEL_MEAN):", type(PIXEL_MEAN)) print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n") PIXEL_MEAN_array = np.array(PIXEL_MEAN) print("NumPy array") print("PIXEL_MEAN_array:", PIXEL_MEAN_array) print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array)) print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0])) print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype, "\n") image_array = np.array( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], [[21, 22, 23], [24, 25, 26], [27, 28, 29], [30, 31, 32]]]) print("image_array:", image_array) print("type(image_array):", type(image_array)) print("type(image_array[0]):", type(image_array[0])) print("image_array.dtype:", image_array.dtype, "\n") image_array_fusion = image_array + np.array(PIXEL_MEAN) print("image_array_fusion:", image_array_fusion) print("type(image_array_fusion):", type(image_array_fusion)) print("type(image_array_fusion[0]):", type(image_array_fusion[0])) print("image_array_fusion.dtype:", image_array_fusion.dtype)
/usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0 ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++-- current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow Python list PIXEL_MEAN: [123.68, 116.779, 103.939] type(PIXEL_MEAN): <type 'list'> type(PIXEL_MEAN[0]): <type 'float'> NumPy array PIXEL_MEAN_array: [123.68 116.779 103.939] type(PIXEL_MEAN_array): <type 'numpy.ndarray'> type(PIXEL_MEAN_array[0]): <type 'numpy.float64'> PIXEL_MEAN_array.dtype: float64 image_array: [[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] [[21 22 23] [24 25 26] [27 28 29] [30 31 32]]] type(image_array): <type 'numpy.ndarray'> type(image_array[0]): <type 'numpy.ndarray'> image_array.dtype: int64 image_array_fusion: [[[124.68 118.779 106.939] [127.68 121.779 109.939] [130.68 124.779 112.939] [133.68 127.779 115.939]] [[144.68 138.779 126.939] [147.68 141.779 129.939] [150.68 144.779 132.939] [153.68 147.779 135.939]]] type(image_array_fusion): <type 'numpy.ndarray'> type(image_array_fusion[0]): <type 'numpy.ndarray'> image_array_fusion.dtype: float64 Process finished with exit code 0
以上就是Python list與NumPy array的區(qū)別是什么,小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注創(chuàng)新互聯(lián)成都網站設計公司行業(yè)資訊頻道。
另外有需要云服務器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
網頁標題:Pythonlist與NumPyarray的區(qū)別是什么-創(chuàng)新互聯(lián)
URL鏈接:http://www.rwnh.cn/article24/igcce.html
成都網站建設公司_創(chuàng)新互聯(lián),為您提供網站設計、網站營銷、品牌網站制作、品牌網站設計、網站收錄、網站導航
聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內容