本篇內(nèi)容主要講解“Python解析參數(shù)的方法有哪些”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“Python解析參數(shù)的方法有哪些”吧!
我們一直強(qiáng)調(diào)網(wǎng)站制作、成都網(wǎng)站制作對于企業(yè)的重要性,如果您也覺得重要,那么就需要我們慎重對待,選擇一個安全靠譜的網(wǎng)站建設(shè)公司,企業(yè)網(wǎng)站我們建議是要么不做,要么就做好,讓網(wǎng)站能真正成為企業(yè)發(fā)展過程中的有力推手。專業(yè)網(wǎng)站建設(shè)公司不一定是大公司,創(chuàng)新互聯(lián)作為專業(yè)的網(wǎng)絡(luò)公司選擇我們就是放心。
在下面的代碼中,我將使用 Visual Studio Code,這是一個非常高效的集成 Python 開發(fā)環(huán)境。這個工具的美妙之處在于它通過安裝擴(kuò)展支持每種編程語言,集成終端并允許同時處理大量 Python 腳本和 Jupyter 筆記本
數(shù)據(jù)集,使用的是 Kaggle 上的共享自行車數(shù)據(jù)集
就像上圖所示,我們有一個標(biāo)準(zhǔn)的結(jié)構(gòu)來組織我們的小項目:
包含我們數(shù)據(jù)集的名為 data 的文件夾
train.py 文件
用于指定超參數(shù)的 options.py 文件
首先,我們可以創(chuàng)建一個文件 train.py,在其中我們有導(dǎo)入數(shù)據(jù)、在訓(xùn)練數(shù)據(jù)上訓(xùn)練模型并在測試集上對其進(jìn)行評估的基本程序:
import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error, mean_absolute_error from options import train_options df = pd.read_csv('data\hour.csv') print(df.head()) opt = train_options() X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values y =df['cnt'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) if opt.normalize == True: scaler = StandardScaler() X = scaler.fit_transform(X) rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth) model = rf.fit(X_train,y_train) y_pred = model.predict(X_test) rmse = np.sqrt(mean_squared_error(y_pred, y_test)) mae = mean_absolute_error(y_pred, y_test) print("rmse: ",rmse) print("mae: ",mae)
在代碼中,我們還導(dǎo)入了包含在 options.py 文件中的 train_options 函數(shù)。后一個文件是一個 Python 文件,我們可以從中更改 train.py 中考慮的超參數(shù):
import argparse def train_options(): parser = argparse.ArgumentParser() parser.add_argument("--normalize", default=True, type=bool, help='maximum depth') parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators') parser.add_argument("--max_features", default=6, type=int, help='maximum of features',) parser.add_argument("--max_depth", default=5, type=int,help='maximum depth') opt = parser.parse_args() return opt
在這個例子中,我們使用了 argparse 庫,它在解析命令行參數(shù)時非常流行。首先,我們初始化解析器,然后,我們可以添加我們想要訪問的參數(shù)。
這是運行代碼的示例:
python train.py
要更改超參數(shù)的默認(rèn)值,有兩種方法。第一個選項是在 options.py 文件中設(shè)置不同的默認(rèn)值。另一種選擇是從命令行傳遞超參數(shù)值:
python train.py --n_estimators 200
我們需要指定要更改的超參數(shù)的名稱和相應(yīng)的值。
python train.py --n_estimators 200 --max_depth 7
和前面一樣,我們可以保持類似的文件結(jié)構(gòu)。在這種情況下,我們將 options.py 文件替換為 JSON 文件。換句話說,我們想在 JSON 文件中指定超參數(shù)的值并將它們傳遞給 train.py 文件。與 argparse 庫相比,JSON 文件可以是一種快速且直觀的替代方案,它利用鍵值對來存儲數(shù)據(jù)。下面我們創(chuàng)建一個 options.json 文件,其中包含我們稍后需要傳遞給其他代碼的數(shù)據(jù)。
{ "normalize":true, "n_estimators":100, "max_features":6, "max_depth":5 }
如上所見,它與 Python 字典非常相似。但是與字典不同的是,它包含文本/字符串格式的數(shù)據(jù)。此外,還有一些語法略有不同的常見數(shù)據(jù)類型。例如,布爾值是 false/true,而 Python 識別 False/True。JSON 中其他可能的值是數(shù)組,它們用方括號表示為 Python 列表。
在 Python 中使用 JSON 數(shù)據(jù)的美妙之處在于,它可以通過 load 方法轉(zhuǎn)換成 Python 字典:
f = open("options.json", "rb") parameters = json.load(f)
要訪問特定項目,我們只需要在方括號內(nèi)引用它的鍵名:
if parameters["normalize"] == True: scaler = StandardScaler() X = scaler.fit_transform(X) rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42) model = rf.fit(X_train,y_train) y_pred = model.predict(X_test)
最后一種選擇是利用 YAML 的潛力。與 JSON 文件一樣,我們將 Python 代碼中的 YAML 文件作為字典讀取,以訪問超參數(shù)的值。YAML 是一種人類可讀的數(shù)據(jù)表示語言,其中層次結(jié)構(gòu)使用雙空格字符表示,而不是像 JSON 文件中的括號。下面我們展示 options.yaml 文件將包含的內(nèi)容:
normalize: True n_estimators: 100 max_features: 6 max_depth: 5
在 train.py 中,我們打開 options.yaml 文件,該文件將始終使用 load 方法轉(zhuǎn)換為 Python 字典,這一次是從 yaml 庫中導(dǎo)入的:
import yaml f = open('options.yaml','rb') parameters = yaml.load(f, Loader=yaml.FullLoader)
和前面一樣,我們可以使用字典所需的語法訪問超參數(shù)的值。
到此,相信大家對“Python解析參數(shù)的方法有哪些”有了更深的了解,不妨來實際操作一番吧!這里是創(chuàng)新互聯(lián)網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!
分享文章:Python解析參數(shù)的方法有哪些
標(biāo)題來源:http://www.rwnh.cn/article2/gopdoc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供響應(yīng)式網(wǎng)站、靜態(tài)網(wǎng)站、全網(wǎng)營銷推廣、網(wǎng)站策劃、微信小程序、定制網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)