怎樣進行numa loadbance的死鎖分析,很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。
站在用戶的角度思考問題,與客戶深入溝通,找到赤峰林西網(wǎng)站設(shè)計與赤峰林西網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗,讓設(shè)計與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個性化、用戶體驗好的作品,建站類型包括:網(wǎng)站建設(shè)、成都做網(wǎng)站、企業(yè)官網(wǎng)、英文網(wǎng)站、手機端網(wǎng)站、網(wǎng)站推廣、國際域名空間、雅安服務(wù)器托管、企業(yè)郵箱。業(yè)務(wù)覆蓋赤峰林西地區(qū)。
背景:這個是在3.10.0-957.el7.x86_64 遇到的一例crash。下面列一下我們是怎么排查并解這個問題的。
Oppo云智能監(jiān)控發(fā)現(xiàn)機器down機:
KERNEL: /usr/lib/debug/lib/modules/3.10.0-957.el7.x86_64/vmlinux
....
PANIC: "Kernel panic - not syncing: Hard LOCKUP"
PID: 14
COMMAND: "migration/1"
TASK: ffff8f1bf6bb9040 [THREAD_INFO: ffff8f1bf6bc4000]
CPU: 1
STATE: TASK_INTERRUPTIBLE (PANIC)
crash> bt
PID: 14 TASK: ffff8f1bf6bb9040 CPU: 1 COMMAND: "migration/1"
#0 [ffff8f4afbe089f0] machine_kexec at ffffffff83863674
#1 [ffff8f4afbe08a50] __crash_kexec at ffffffff8391ce12
#2 [ffff8f4afbe08b20] panic at ffffffff83f5b4db
#3 [ffff8f4afbe08ba0] nmi_panic at ffffffff8389739f
#4 [ffff8f4afbe08bb0] watchdog_overflow_callback at ffffffff83949241
#5 [ffff8f4afbe08bc8] __perf_event_overflow at ffffffff839a1027
#6 [ffff8f4afbe08c00] perf_event_overflow at ffffffff839aa694
#7 [ffff8f4afbe08c10] intel_pmu_handle_irq at ffffffff8380a6b0
#8 [ffff8f4afbe08e38] perf_event_nmi_handler at ffffffff83f6b031
#9 [ffff8f4afbe08e58] nmi_handle at ffffffff83f6c8fc
#10 [ffff8f4afbe08eb0] do_nmi at ffffffff83f6cbd8
#11 [ffff8f4afbe08ef0] end_repeat_nmi at ffffffff83f6bd69
[exception RIP: native_queued_spin_lock_slowpath+462]
RIP: ffffffff839121ae RSP: ffff8f1bf6bc7c50 RFLAGS: 00000002
RAX: 0000000000000001 RBX: 0000000000000082 RCX: 0000000000000001
RDX: 0000000000000101 RSI: 0000000000000001 RDI: ffff8f1afdf55fe8---鎖
RBP: ffff8f1bf6bc7c50 R8: 0000000000000101 R9: 0000000000000400
R10: 000000000000499e R11: 000000000000499f R12: ffff8f1afdf55fe8
R13: ffff8f1bf5150000 R14: ffff8f1afdf5b488 R15: ffff8f1bf5187818
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
--- <NMI exception stack> ---
#12 [ffff8f1bf6bc7c50] native_queued_spin_lock_slowpath at ffffffff839121ae
#13 [ffff8f1bf6bc7c58] queued_spin_lock_slowpath at ffffffff83f5bf4b
#14 [ffff8f1bf6bc7c68] _raw_spin_lock_irqsave at ffffffff83f6a487
#15 [ffff8f1bf6bc7c80] cpu_stop_queue_work at ffffffff8392fc70
#16 [ffff8f1bf6bc7cb0] stop_one_cpu_nowait at ffffffff83930450
#17 [ffff8f1bf6bc7cc0] load_balance at ffffffff838e4c6e
#18 [ffff8f1bf6bc7da8] idle_balance at ffffffff838e5451
#19 [ffff8f1bf6bc7e00] __schedule at ffffffff83f67b14
#20 [ffff8f1bf6bc7e88] schedule at ffffffff83f67bc9
#21 [ffff8f1bf6bc7e98] smpboot_thread_fn at ffffffff838ca562
#22 [ffff8f1bf6bc7ec8] kthread at ffffffff838c1c31
#23 [ffff8f1bf6bc7f50] ret_from_fork_nospec_begin at ffffffff83f74c1d
crash>
二、故障現(xiàn)象分析
hardlock一般是由于關(guān)中斷時間過長,從堆???,上面的"migration/1" 進程在搶spinlock,由于_raw_spin_lock_irqsave 會先調(diào)用 arch_local_irq_disable,然后再去拿鎖,而arch_local_irq_disable 是常見的關(guān)中斷函數(shù),下面分析這個進程想要拿的鎖被誰拿著。
x86架構(gòu)下,native_queued_spin_lock_slowpath的rdi就是存放鎖地址的
crash> arch_spinlock_t ffff8f1afdf55fe8struct arch_spinlock_t { val = { counter = 257 }}
下面,我們需要了解,這個是一把什么鎖。從調(diào)用鏈分析 idle_balance-->load_balance-->stop_one_cpu_nowait-->cpu_stop_queue_work反匯編 cpu_stop_queue_work 拿鎖阻塞的代碼:
crash> dis -l ffffffff8392fc70
/usr/src/debug/kernel-3.10.0-957.el7/linux-3.10.0-957.el7.x86_64/kernel/stop_machine.c: 91
0xffffffff8392fc70 <cpu_stop_queue_work+48>: cmpb $0x0,0xc(%rbx)
85 static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
86 {
87 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
88 unsigned long flags;
89
90 spin_lock_irqsave(&stopper->lock, flags);---所以是卡在拿這把鎖
91 if (stopper->enabled)
92 __cpu_stop_queue_work(stopper, work);
93 else
94 cpu_stop_signal_done(work->done, false);
95 spin_unlock_irqrestore(&stopper->lock, flags);
96 }
看起來 需要根據(jù)cpu號,來獲取對應(yīng)的percpu變量 cpu_stopper,這個入?yún)⒃?load_balance 函數(shù)中找到的最忙的rq,然后獲取其對應(yīng)的cpu號:
6545 static int load_balance(int this_cpu, struct rq *this_rq,
6546 struct sched_domain *sd, enum cpu_idle_type idle,
6547 int *should_balance)
6548 {
....
6735 if (active_balance) {
6736 stop_one_cpu_nowait(cpu_of(busiest),
6737 active_load_balance_cpu_stop, busiest,
6738 &busiest->active_balance_work);
6739 }
....
6781 }
crash> dis -l load_balance |grep stop_one_cpu_nowait -B 6
0xffffffff838e4c4d <load_balance+2045>: callq 0xffffffff83f6a0e0 <_raw_spin_unlock_irqrestore>
/usr/src/debug/kernel-3.10.0-957.el7/linux-3.10.0-957.el7.x86_64/kernel/sched/fair.c: 6736
0xffffffff838e4c52 <load_balance+2050>: mov 0x930(%rbx),%edi------------根據(jù)rbx可以取cpu號,rbx就是最忙的rq
0xffffffff838e4c58 <load_balance+2056>: lea 0x908(%rbx),%rcx
0xffffffff838e4c5f <load_balance+2063>: mov %rbx,%rdx
0xffffffff838e4c62 <load_balance+2066>: mov $0xffffffff838de690,%rsi
0xffffffff838e4c69 <load_balance+2073>: callq 0xffffffff83930420 <stop_one_cpu_nowait>
然后我們再棧中取的數(shù)據(jù)如下:
最忙的組是:crash> rq.cpu ffff8f1afdf5ab80 cpu = 26
也就是說,1號cpu在等 percpu變量cpu_stopper 的26號cpu的鎖。
然后我們搜索這把鎖在其他哪個進程的棧中,找到了如下:
ffff8f4957fbfab0: ffff8f1afdf55fe8 --------這個在 355608 的棧中crash> kmem ffff8f4957fbfab0 PID: 355608COMMAND: "custom_exporter" TASK: ffff8f4aea3a8000 [THREAD_INFO: ffff8f4957fbc000] CPU: 26--------剛好也是運行在26號cpu的進程 STATE: TASK_RUNNING (ACTIVE)
下面,就需要分析,為什么位于26號cpu的進程 custom_exporter 會長時間拿著 ffff8f1afdf55fe8
我們來分析26號cpu的堆棧:
crash> bt -f 355608PID: 355608 TASK: ffff8f4aea3a8000 CPU: 26 COMMAND: "custom_exporter"..... #3 [ffff8f1afdf48ef0] end_repeat_nmi at ffffffff83f6bd69 [exception RIP: try_to_wake_up+114] RIP: ffffffff838d63d2 RSP: ffff8f4957fbfa30 RFLAGS: 00000002 RAX: 0000000000000001 RBX: ffff8f1bf6bb9844 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8f1bf6bb9844 RBP: ffff8f4957fbfa70 R8: ffff8f4afbe15ff0 R9: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: ffff8f1bf6bb9040 R14: 0000000000000000 R15: 0000000000000003 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0000--- <NMI exception stack> --- #4 [ffff8f4957fbfa30] try_to_wake_up at ffffffff838d63d2 ffff8f4957fbfa38: 000000000001ab80 0000000000000086 ffff8f4957fbfa48: ffff8f4afbe15fe0 ffff8f4957fbfb48 ffff8f4957fbfa58: 0000000000000001 ffff8f4afbe15fe0 ffff8f4957fbfa68: ffff8f1afdf55fe0 ffff8f4957fbfa80 ffff8f4957fbfa78: ffffffff838d6705 #5 [ffff8f4957fbfa78] wake_up_process at ffffffff838d6705 ffff8f4957fbfa80: ffff8f4957fbfa98 ffffffff8392fc05 #6 [ffff8f4957fbfa88] __cpu_stop_queue_work at ffffffff8392fc05 ffff8f4957fbfa90: 000000000000001a ffff8f4957fbfbb0 ffff8f4957fbfaa0: ffffffff8393037a #7 [ffff8f4957fbfaa0] stop_two_cpus at ffffffff8393037a..... ffff8f4957fbfbb8: ffffffff838d3867 #8 [ffff8f4957fbfbb8] migrate_swap at ffffffff838d3867 ffff8f4957fbfbc0: ffff8f4aea3a8000 ffff8f1ae77dc100 -------棧中的 migration_swap_arg ffff8f4957fbfbd0: 000000010000001a 0000000080490f7c ffff8f4957fbfbe0: ffff8f4aea3a8000 ffff8f4957fbfc30 ffff8f4957fbfbf0: 0000000000000076 0000000000000076 ffff8f4957fbfc00: 0000000000000371 ffff8f4957fbfce8 ffff8f4957fbfc10: ffffffff838dd0ba #9 [ffff8f4957fbfc10] task_numa_migrate at ffffffff838dd0ba ffff8f4957fbfc18: ffff8f1afc121f40 000000000000001a ffff8f4957fbfc28: 0000000000000371 ffff8f4aea3a8000 ---這里ffff8f4957fbfc30 就是 task_numa_env 的存放在棧中的地址 ffff8f4957fbfc38: 000000000000001a 000000010000003f ffff8f4957fbfc48: 000000000000000b 000000000000022c ffff8f4957fbfc58: 00000000000049a0 0000000000000012 ffff8f4957fbfc68: 0000000000000001 0000000000000003 ffff8f4957fbfc78: 000000000000006f 000000000000499f ffff8f4957fbfc88: 0000000000000012 0000000000000001 ffff8f4957fbfc98: 0000000000000070 ffff8f1ae77dc100 ffff8f4957fbfca8: 00000000000002fb 0000000000000001 ffff8f4957fbfcb8: 0000000080490f7c ffff8f4aea3a8000 ---rbx壓棧在此,所以這個就是current ffff8f4957fbfcc8: 0000000000017a48 0000000000001818 ffff8f4957fbfcd8: 0000000000000018 ffff8f4957fbfe20 ffff8f4957fbfce8: ffff8f4957fbfcf8 ffffffff838dd4d3 #10 [ffff8f4957fbfcf0] numa_migrate_preferred at ffffffff838dd4d3 ffff8f4957fbfcf8: ffff8f4957fbfd88 ffffffff838df5b0 .....crash> crash>
整體上看,26號上的cpu也正在進行numa的balance動作,簡單展開介紹一下numa在balance下的動作在 task_tick_fair 函數(shù)中:
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se = &curr->se;
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
entity_tick(cfs_rq, se, queued);
}
if (numabalancing_enabled)----------如果開啟numabalancing,則會調(diào)用task_tick_numa
task_tick_numa(rq, curr);
update_rq_runnable_avg(rq, 1);
}
而 task_tick_numa 會根據(jù)掃描情況,將當(dāng)前進程需要numa_balance的時候推送到一個work中。通過調(diào)用change_prot_numa將所有映射到VMA的PTE頁表項該為PAGE_NONE,使得下次進程訪問頁表的時候產(chǎn)生缺頁中斷,handle_pte_fault 函數(shù)會由于缺頁中斷的機會來根據(jù)numa 選擇更好的node,具體不再展開。
在 26號cpu的調(diào)用鏈中,stop_two_cpus-->cpu_stop_queue_two_works-->cpu_stop_queue_work 函數(shù)由于 cpu_stop_queue_two_works 被內(nèi)聯(lián)了,但是 cpu_stop_queue_two_works 調(diào)用cpu_stop_queue_work有兩次,所以需要根據(jù)壓棧地址判斷當(dāng)前是哪次調(diào)用出現(xiàn)問題。
227 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 228 int cpu2, struct cpu_stop_work *work2) 229 { 230 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 231 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 232 int err; 233 234 lg_double_lock(&stop_cpus_lock, cpu1, cpu2); 235 spin_lock_irq(&stopper1->lock);---注意到這里已經(jīng)持有了stopper1的鎖 236 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);..... 243 __cpu_stop_queue_work(stopper1, work1); 244 __cpu_stop_queue_work(stopper2, work2);..... 251 }
根據(jù)壓棧的地址:
#5 [ffff8f4957fbfa78] wake_up_process at ffffffff838d6705
ffff8f4957fbfa80: ffff8f4957fbfa98 ffffffff8392fc05
#6 [ffff8f4957fbfa88] __cpu_stop_queue_work at ffffffff8392fc05
ffff8f4957fbfa90: 000000000000001a ffff8f4957fbfbb0
ffff8f4957fbfaa0: ffffffff8393037a
#7 [ffff8f4957fbfaa0] stop_two_cpus at ffffffff8393037a
ffff8f4957fbfaa8: 0000000100000001 ffff8f1afdf55fe8
crash> dis -l ffffffff8393037a 2
/usr/src/debug/kernel-3.10.0-957.el7/linux-3.10.0-957.el7.x86_64/kernel/stop_machine.c: 244
0xffffffff8393037a <stop_two_cpus+394>: lea 0x48(%rsp),%rsi
0xffffffff8393037f <stop_two_cpus+399>: mov %r15,%rdi
說明壓棧的是244行的地址,也就是說目前調(diào)用的是243行的 __cpu_stop_queue_work。
然后分析對應(yīng)的入?yún)ⅲ?/p>crash> task_numa_env ffff8f4957fbfc30
struct task_numa_env {
p = 0xffff8f4aea3a8000,
src_cpu = 26,
src_nid = 0,
dst_cpu = 63,
dst_nid = 1,
src_stats = {
nr_running = 11,
load = 556, ---load高
compute_capacity = 18848, ---容量相當(dāng)
task_capacity = 18,
has_free_capacity = 1
},
dst_stats = {
nr_running = 3,
load = 111, ---load低,且容量相當(dāng),要遷移過來
compute_capacity = 18847, ---容量相當(dāng)
task_capacity = 18,
has_free_capacity = 1
},
imbalance_pct = 112,
idx = 0,
best_task = 0xffff8f1ae77dc100, ---要對調(diào)的task,是通過 task_numa_find_cpu-->task_numa_compare-->task_numa_assign 來獲取的
best_imp = 763,
best_cpu = 1---最佳的swap的對象對于1號cpu
}
crash> migration_swap_arg ffff8f4957fbfbc0
struct migration_swap_arg {
src_task = 0xffff8f4aea3a8000,
dst_task = 0xffff8f1ae77dc100,
src_cpu = 26,
dst_cpu = 1-----選擇的dst cpu為1
}
根據(jù) cpu_stop_queue_two_works 的代碼,它在持有 cpu_stopper:26號cpu鎖的情況下,去調(diào)用try_to_wake_up ,wake的對象是 用來migrate的 kworker。
static void __cpu_stop_queue_work(struct cpu_stopper *stopper, struct cpu_stop_work *work){ list_add_tail(&work->list, &stopper->works); wake_up_process(stopper->thread);//其實一般就是喚醒 migration}
由于最佳的cpu對象為1,所以需要cpu上的migrate來拉取進程。
crash> p cpu_stopper:1
per_cpu(cpu_stopper, 1) = $33 = {
thread = 0xffff8f1bf6bb9040, ----需要喚醒的目的task
lock = {
{
rlock = {
raw_lock = {
val = {
counter = 1
}
}
}
}
},
enabled = true,
works = {
next = 0xffff8f4957fbfac0,
prev = 0xffff8f4957fbfac0
},
stop_work = {
list = {
next = 0xffff8f4afbe16000,
prev = 0xffff8f4afbe16000
},
fn = 0xffffffff83952100,
arg = 0x0,
done = 0xffff8f1ae3647c08
}
}
crash> kmem 0xffff8f1bf6bb9040
CACHE NAME OBJSIZE ALLOCATED TOTAL SLABS SSIZE
ffff8eecffc05f00 task_struct 4152 1604 2219 317 32k
SLAB MEMORY NODE TOTAL ALLOCATED FREE
fffff26501daee00 ffff8f1bf6bb8000 1 7 7 0
FREE / [ALLOCATED]
[ffff8f1bf6bb9040]
PID: 14
COMMAND: "migration/1"--------------目的task就是對應(yīng)的cpu上的migration
TASK: ffff8f1bf6bb9040 [THREAD_INFO: ffff8f1bf6bc4000]
CPU: 1
STATE: TASK_INTERRUPTIBLE (PANIC)
PAGE PHYSICAL MAPPING INDEX CNT FLAGS
fffff26501daee40 3076bb9000 0 0 0 6fffff00008000 tail
現(xiàn)在的問題是,雖然我們知道了當(dāng)前cpu26號進程在拿了鎖的情況下去喚醒1號cpu上的migrate進程,那么為什么會遲遲不釋放鎖,導(dǎo)致1號cpu因為等待該鎖時間過長而觸發(fā)了hardlock的panic呢?
下面就分析,為什么它持鎖的時間這么長:
#3 [ffff8f1afdf48ef0] end_repeat_nmi at ffffffff83f6bd69
[exception RIP: try_to_wake_up+114]
RIP: ffffffff838d63d2 RSP: ffff8f4957fbfa30 RFLAGS: 00000002
RAX: 0000000000000001 RBX: ffff8f1bf6bb9844 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000003 RDI: ffff8f1bf6bb9844
RBP: ffff8f4957fbfa70 R8: ffff8f4afbe15ff0 R9: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff8f1bf6bb9040 R14: 0000000000000000 R15: 0000000000000003
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0000
--- <NMI exception stack> ---
#4 [ffff8f4957fbfa30] try_to_wake_up at ffffffff838d63d2
ffff8f4957fbfa38: 000000000001ab80 0000000000000086
ffff8f4957fbfa48: ffff8f4afbe15fe0 ffff8f4957fbfb48
ffff8f4957fbfa58: 0000000000000001 ffff8f4afbe15fe0
ffff8f4957fbfa68: ffff8f1afdf55fe0 ffff8f4957fbfa80
crash> dis -l ffffffff838d63d2
/usr/src/debug/kernel-3.10.0-957.el7/linux-3.10.0-957.el7.x86_64/kernel/sched/core.c: 1790
0xffffffff838d63d2 <try_to_wake_up+114>: mov 0x28(%r13),%eax
1721 static int
1722 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1723 {
.....
1787 * If the owning (remote) cpu is still in the middle of schedule() with
1788 * this task as prev, wait until its done referencing the task.
1789 */
1790 while (p->on_cpu)---------原來循環(huán)在此
1791 cpu_relax();
.....
1814 return success;
1815 }
我們用一個簡單的圖來表示一下這個hardlock:
CPU1 CPU26 schedule(.prev=migrate/1) <fault> pick_next_task() ... idle_balance() migrate_swap() active_balance() stop_two_cpus() spin_lock(stopper0->lock) spin_lock(stopper1->lock) try_to_wake_up pause() -- waits for schedule() stop_one_cpu(1) spin_lock(stopper26->lock) -- waits for stopper lock
查看上游的補丁
static void __cpu_stop_queue_work(struct cpu_stopper *stopper,- struct cpu_stop_work *work)+ struct cpu_stop_work *work,+ struct wake_q_head *wakeq) { list_add_tail(&work->list, &stopper->works);- wake_up_process(stopper->thread);+ wake_q_add(wakeq, stopper->thread); }
三、故障復(fù)現(xiàn)
由于這個是一個race condition導(dǎo)致的hardlock,邏輯上分析已經(jīng)沒有問題了,就沒有花時間去復(fù)現(xiàn),該環(huán)境運行一個dpdk的node,不過為了性能設(shè)置了只在一個numa節(jié)點上運行,可以頻繁造成numa的不均衡,所以要復(fù)現(xiàn)的同學(xué),可以參考單numa節(jié)點上運行dpdk來復(fù)現(xiàn),會概率大一些。
我們的解決方案是:
1.關(guān)閉numa的自動balance.
2.手工合入 linux社區(qū)的 0b26351b910f 補丁
3.這個補丁在centos的 3.10.0-974.el7 合入了:
[kernel] stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock (Phil Auld) [1557061]
同時紅帽又反向合入到了3.10.0-957.27.2.el7.x86_64,所以把centos內(nèi)核升級到 3.10.0-957.27.2.el7.x86_64也是一種選擇。
看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進一步的了解或閱讀更多相關(guān)文章,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝您對創(chuàng)新互聯(lián)的支持。
本文題目:怎樣進行numaloadbance的死鎖分析
標(biāo)題路徑:http://www.rwnh.cn/article12/ipccgc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站制作、動態(tài)網(wǎng)站、外貿(mào)網(wǎng)站建設(shè)、ChatGPT、App設(shè)計、微信公眾號
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)